Vol. 48, Issue 2, pp. 297-309

Vol. 48 Issue 2 pp. 297-309

Changes in the polarization states of random electromagnetic vortex beams propagating in biological tissues

Meiling Duan, Yunguang Wu, Ningning Su


random electromagnetic vortex beam, biological tissue, the state of polarization


The changes in the on-axis polarization state of random electromagnetic Gaussian Schell-model vortex beams propagating in biological tissues have been studied. In different media propagation, the bigger Cn2 is, the earlier the appearance of the inflexion points in the on-axis degree of the polarization P(0, 0, z) is. As the propagation distance increases, the values of the on-axis orientation angle θ(0, 0, z) undergo several processes: at the beginning they are positive, then gradually increase to the maximum, jump to a negative value, finally tend to a fixed value. The bigger Cn2 corresponds to previous jumping position. In the entire propagation, the values of the on-axis ellipticity ε(0, 0, z) are larger than the initial one. There exists a phenomenon that the values of P(0, 0, z), θ(0, 0, z) and ε(0, 0, z) keep their extremes in a length of propagation distances for the far infrared beams. The maximum of P(0, 0, z) is the smallest and the jumping range of θ(0, 0, z) is the largest for the ultraviolet beams. Compared with σyy > σxx, the changes in magnitudes in P(0, 0, z) are more obvious when σyy < σxx, the changes in θ(0, 0, z) are just the reverse for σyy < σxx.

Vol. 48
Issue 2
Article No: 12
pp. 297-309

0.31 MB
OPTICA APPLICATA - a quarterly of the Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology