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A novel implementation of the finite difference beam propagation method (FD BPM) for optical 
rib waveguide structures in air is presented. Calculations for typical gallium arsenide based rib 
waveguide tapers confirm that the new approach is faster and requires less memory than previously 
used techniques, whilst maintaining accuracy. This is achieved by incorporating known analytical 
behaviour into a direct numerical algorithm.

1. Introduction
The finite difference beam propagation method (FD BPM) [1] is widely used to 
model optical structures of practical importance, including optical rib waveguide 
tapers (Fig. la) which are the focus of the studies described in this paper. When 
analysing such optical tapers in rectangular coordinates [2], it has been almost 
mandatory to model the oblique boundaries between core and cladding as 
a staircase approximation. New results [3] — [5] now indicate that numerical noise 
introduced by staircasing [3] can be substantially suppressed by the use of 
non-orthogonal, tapered or tapered-oblique coordinate systems (Fig. lb) [4], [5] 
with the FD BPM. This approach allows the actual oblique boundaries between the 
core and cladding to be modelled correctly and proves to be faster and to require less 
computer memory than the standard (rectangular coordinate) FD BPM algorithm 
for the same accuracy [3], Here we show that for a wide range of practically useful 
structures an even more efficient algorithm can be developed. The idea is based upon 
the observation that in air clad waveguide structures used in integrated optics, any 
scattered light is primarily radiated into the substrate or the outer slab and the air 
only supports a rapidly decaying field. Although this decaying field cannot be 
ignored without compromising accuracy, the effects of its presence are excellently 
approximated by slightly increasing the dimensions of the semiconductor structure 
by the Goos-Hanchen penetration distance and imposing a zero field boundary 
(Fig. lc). This concept was introduced in [6] and successfully applied to decrease the 
memory requirement for FD mode solvers [7]; it also constitutes the backbone of
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Fig. 1. (a) Rib-waveguide based optical taper (b) 
taper-oblique coordinate system and (c) the principle 
of effective width where the dimensions d, h and 
w belong to the physical rib whereas D, H  and 

x W  belong to the effective ones.

the spectral index method, a very fast and accurate technique for the modal analysis 
of semiconductor rib waveguides in air [8],

For maximum benefit we have simultaneously applied both the ideas of 
non-orthogonal coordinate transforms and displaced boundaries to 3D FD BPM 
analysis of optical tapers. The results obatined confirm that a considerable gain in 
the efficiency of the FD BPM approach has been achieved, both in terms of 
calculation time and memory requirements, and that the considerable advantages of 
using the non-orthogonal coordinate algorithm are preserved.

2. Implementation

Following previously established procedures, the paraxial wave equation expressed 
in the tapered coordinate system is derived from the Helmholtz equation for the 
scalar potential and solved using the finite difference Crank-Nicolson scheme [4], 
A thorough description of this may be found in [3] — [5], The effective dimensions 
of the guide (Fig. lc) are calculated using the relations [6]: W = w  + S, H = h + S, 
D = d + d, where d = (P2 — k2) and kc is the wavenumber in the air cladding 
(Fig. la). An ILU(O) pre-conditioned Bi-CGSTAB algorithm has been used [9],
[10] to solve the resulting set of the algebraic equations, with a transparent 
boundary condition (TBC) applied on the open boundaries of the analysis window
[11]  .
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3. Results and discussion

To demonstrate the advantages of the tapered FD BPM with displaced boundaries 
we have analysed propagation in a range of air-clad GaAs-based tapers with d+h = 
1 pm (Fig. la). In each case the waveguide is tapered from a full width of 3 pm to 1.6 
pm over a distance of 100 pm, the refractive indices in the core and substrate are 3.44 
and 3.40, respectively, and the operating wavelength is 1.15 pm. A symmetric taper is 
assumed such that only half the cross-section is considered. In the first instance the 
embossed rib waveguide taper (with d = 0 and h =  1 pm) is studied in detail.
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Fig. 2. Field intensity contour plots in the vertical cross-section x  =  0 for a 3D embossed rib waveguide 
taper operating at 1.15 pm with w, =  1.5 pm, w0 =  0.8 pm, nf  = 3.44, n, =  3.4, nc =  1.0, L  =  100 pm, 
h =  1 pm: a — standard tapered FD BPM [4], [5], b — present tapered FD BPM with displaced 
boundary. The waveguide is between y = 0 pm and y  =  1 pm. Contours are given at intervals of 0.1, 
starting from 0.05 of the maximum value.

To illustrate the field behaviour at the air-semiconductor of this typical structure 
we used the standard tapered FD BPM [4] to calculate the field intensity 
distribution for the vertical cross-section x = 0 and present this in Fig. 2a. It is seen 
that there is little radiation into the air and the optical field is guided predominantly 
in the core and substrate, which confirms the validity of the assumption that the 
energy transported through the air-dielectric interface is negligible. In Figure 2b the 
corresponding field distribution calculated with the tapered FD BPM with the
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displaced boundary is shown for comparison. Good overall agreement between these 
results is observed. It is also noted that numerical noise is not observable in the 
results obtained using either method so the tapered FD BPM with displaced 
boundaries maintains this desirable feature.

dx [pm]

Fig. 3. Dependence of the power in the fundamental mode at the end of the structure analysed as 
a function of the transverse mesh size for a 3D embossed rib waveguide taper operating at 1.15 pm: 
w, =  1.5 pm, w0 =  0.8 pm, nf  — 3.44, n, =  3.4, nr =  1.0, L — 100 pm, h — pm, Az =  0.1 pm.

In Figure 3, the dependence of P, the power guided in the local fundamental 
mode at the end of the taper, is shown as a function of the transverse mesh size with 
Az fixed at 0.1 pm. Three sets of results, produced by the tapered FD BPM 
algorithms with and without the displaced boundaries and a rectangular mesh FD 
BPM, are presented. All three methods converge to the same result, which once more 
confirms the validity of the assumptions made and the accuracy of the present 
method. It is also seen that the novel algorithm with displaced boundaries has the 
same fast convergence rate as the standard tapered algorithm. Results calculated 
using standard and displaced boundary FD BPM algorithms with a transverse mesh 
size of 0.02 pm and Az =  0.1 pm for structures having h = 0.3, 0.5, 0.7 and 0.9 pm 
also showed agreement in P to at least 0.1%.

In the Table the time needed by each of the three algorithms on a Pentium 200 
PC running Salford FORTRAN77 for the tapers with h = 1 pm and h = 0.3 pm is 
given as a function of the transverse mesh size. In the rectangular and standard taper 
BPM calculations a horizontal Hadley-type TBC [11] was positioned two Goos 
-Hänchen shifts above the top of the rib, the minimum distance found by numerical 
experiment to introduce an error in P of less than 1%, and the calculation window at 
the start of the taper was 12 pm (x direction) by 5 pm (y direction) for h = 1 pm



Tapered rib waveguides ... 181

T a b l e .  Computation time for 3D rib taper FD BPM analysis with h = 1 pm (embossed guide) and 
h =  0.3 pm, together with estimated computer memory needed for the embossed guide calculations.
w, =  1.5 pm, w0 = 0.8 jun, nf  =  3.44, n. =  3.40, nc =  1.0, L  =  100 pm, Az =  1 pm.

CPU time [s] (computer memory [Mbyte])
dx — d y  [pm] displaced boundary tapered FD BPM rectangular FD BPM

tapered FD BPM

Embossed guide (h = 1 pm)

0.1 70 (1.5) 107 (1.9) 112 (1.9)
0.05 434 (6.2) 648 (7.8) 709 (7.8)
0.033 1342 (13.9) 2142 (17.5) 2455 (17.5)

h =  0.3 jim

0.1 140 (2) 142 (XI) 146 (2.1)
0.05 724 (8) 868 (8.5) 975 (8.5)
0.033 2122 (17.8) 2736 (19-2) 3151 (19.2)

and 14 pm x 5 pirn for h = 0.3 pun. It is noted that in the case of FD BPM algorithm 
with displaced boundary there is no need to calculate the field intensity, and 
consequently store the respective field values in the computer memory, in the mesh 
nodes situated above the displaced boundary (i.e., in the air region). To demonstrate 
the resulting benefits the table also shows the memory needed by each algorithm for 
the embossed case. It is seen that the novel algorithm is much faster than both the 
standard tapered FD BPM and the rectangular FD BPM. The explanation of this 
fact is that the tapered algorithm with displaced boundary benefits not only from the 
elimination of the numerical noise, as the standard tapered FD BPM, but also from 
the reduction in the number of mesh points in each cross-section. So, by introducing 
the displaced boundary we benefit in two ways, namely we shorten the calculation 
time and decrease the amount of the memory needed. We note also that the amount 
of time saved grows with the finer mesh resolution. Of course it is also possible to 
arrange for a TBC to follow the contour of the rib in the manner indicated in Fig. lc. 
In this case our numerical calculations show that the TBC should be placed at least 
four Goos-Hänchen shifts away from the physical position of the semiconductor-air 
boundary otherwise accuracy is compromised. The present method, which places the 
E = 0 boundary only one Goos-Hänchen shift away from this boundary, always 
offers a better option.

4. Conclusions

We have demonstrated that a novel tapered BPM algorithm, which replaces 
semiconductor-air boundaries by displaced boundaries on which the zero field 
condition is set, provides a fast and accurate tool for the analysis of air clad optical 
waveguide tapers. The results obtained confirm that the new method is faster and
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requires less memory than previous FD-BPM techniques, namely the tapered and 
rectangular FD BPM, and is as accurate as they are.
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