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Fraunhofer diffraction from a ring aperture 
with a spiral phase transmission function: 
numerical and analytical studies
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Fraunhofer diffraction patterns from a spiral phase element with an annular aperture are 
investigated, on normal incidence of a plane monochromatic wave, depending on a spiral 
distribution of the phase of a wave at the output from the element. Results of extensive numerical 
calculations are presented and analytical formulas are derived for a very thin aperture. Basic 
behaviour of diffraction patterns depending on the spiral’s slope is predictable from the analytical 
approximation.

Keywords: spiralphase filters, phase singularities, Fraunhofer diffraction, scalar wave theory.

1. Introduction

Superposition of waves with a smooth wavefront results in a wave whose amplitude 
can drop to zero locally if destructive interference takes place. At the place of the drop, 
the phase of the resultant wave is undeterminable. This is an example of a local phase 
singularity. Assuming elementary spherical waves that propagate from a plane optical 
element, forming a resultant wave, they have to be conveniently phase shifted with 
respect to each other for the resultant wave to have the phase singularity. This can be 
achieved, on normal incidence of a plane wave upon the element, if the element has a 
spiral phase transmission function.

Such spiral structures have been drawing attention of researchers for about three 
decades. They have proved to be of use for various practical applications, such as 
wavefront inspection [1], shifting of light beam frequency [2], scattering reduction in 
omnidirectional antennae [3], and others [4]. They can also be employed for generation 
of diffraction-limited beams introduced by Durnin [5]. In this case, light passes only 
through a thin ring aperture that is concentric with respect to the centre of the spiral 
[6]. Various production techniques have been proposed for these elements [7]—[12]. 
While B azhenov et al. [7] and Heckenberg et al. [8] employ a synthesized hologram, 
the spiral phase function is realized via a helical variation of the thickness of a plate 
in [10]—[12].
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Fig. 1. Spiral variation of the plate thickness: the thickness as a linear function of the angular coordinate 
(a), the plot of the plate surface (b).

Consider the latter case. The plate thickness ris a linear function of the angular 
coordinate ę \  as plotted in Fig. la, and does not depend on the radial coordinate. The 
spiral or helical surface of the plate is shown in Fig. lb. Disregarding a constant phase 
shift, the phase of the wave passing through the plate acquires the phase increment

A #  = y ( n - l ) A f  (1)

with

A< = ,max <min ę '  (2)
2 n

where A is the wavelength of incident radiation, n is the refractive index of the material 
the plate is made of, and /max and tmin are the maximum and minimum plate thicknesses, 
respectively. As follows from Eqs. (1) and (2), the phase increment varies with ę' 
linearly

A<Z> = aq>\ (3)

with the slope

a = ----- j -----( n -  1). (4)

Due to the jump in thickness along the half-line (p = 0, the phase function of the spiral 
plate, given by Eq. (1), is discontinuous along this half-line, further referred to as the 
dislocation half-line.

For the applications mentioned, it is essential that the phase difference between 
the beginning and the end of the spiral be 2ti, or a non-zero integer multiple of 271. The 
multiple is just the slope a. During the production of a plate, the slope a increases from
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zero until its desired integer value is achieved. The actual value of the slope a can be 
inferred from the Fraunhofer diffraction pattern generated by the plate. Therefore, it 
is sensible to investigate the spiral plates with arbitrary values of their slopes, that is, 
both integer and non-integer ones.

In this paper, we investigate, primarily by numerical methods, the Fraunhofer 
diffraction pattern from the spiral plate with a ring aperture that is concentric with 
respect to the centre of the spiral. The reason for this type of aperture is: i) that it is 
of significance for applications concerning generation of diffraction-limited beams, 
ii) because primarily the central part is susceptible to production errors, and iii) because 
this aperture, if thin, allows derivation of relatively simple analytical formulas even 
for a non-integer a, unlike in [11] where no aperture is considered and the optical field 
is expressed in terms of Laguerre-Gaussian modes. A property of symmetry of the 
diffraction pattern is derived, the behaviour of the pattern along the line perpendicular 
to the dislocation half-line is estimated for a narrow ring aperture, and distributions of 
intensity at the focal plane of a lens are calculated for the spiral slopes from 0 to 2.

2. Formulation of the problem

The diffraction pattern produced by the spiral phase plate is investigated at the focal 
plane of a thin condensing lens, as shown in Fig. 2, that is in the Fraunhofer zone. The 
plate is masked by a ring aperture. Using the paraxial scalar approximation, the optical 
field at the focal plane is given by

u (r, , ) = 5 W j  Y

0 * o - f

(5)

Fig. 2. Scheme of investigation of the diffraction pattern from the spiral phase plate at the focal plane of 
a thin condensing lens.
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where

v = d+/+(i-?)??•
while /  is the focal distance, d -  the distance between the plate and the lens, /?0 and 
AR are the central radius and the width of the ring, r, ę  and r\ ę ' -  the polar coordinates 
at the focal plane and the plate’s plane, respectively. The angles are measured 
counterclockwise with respect to the horizontal axis. The field at the plate’s plane 
M0(<p'), is a periodic function, whose period is 2rc, with

uQ(ę ')  = exp (ia(p') for 0 < ę '< 2 n .  (6)

This field arises when a perpendicularly incident plane wave passes through the spiral 
plate shown in Fig. 1. It can be expanded into the Fourier series

oo

u0(ę ') = exp[i(a-/)7t] sinc(a-/) exp(//<p').
/ =  - o o

(7)

Here and throughout the paper, sine is an abbreviation for the function defined as 
follows:

sine |
sin7t£ 

7l£ ■

3. Angular dependence, property of symmetry 
and axial behaviour

If the slope a = n, an integer, then the integral with respect to ę '  in Eq. (5) can be 
expressed in terms of the n-th order Bessel function of the first kind, and the optical 
field is given by the relation

«(r, (p) = 271
exp ( iky/) 

iX f
dr'. (8)

As the integral in Eq. (8) is not a function of the angular coordinate <p, and the 
magnitude of the (^-dependent factor before the integral is unity, the intensity of the 
optical field is independent of (p.

If the slope a is a non-integer, the field at the plate’s plane is not a purely harmonic 
function of (p but a sum of a number of harmonic contributions, as follows from the
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Fourier expansion (7) of optical field w0. Then, the optical field at the focal plane is 
given by a sum of terms proportional to the right-hand side of Eq. (8)*

u(r, (p) =

exp (iky/)
= 27ieX* ^ T  ^  ex p [i(fl-/)7 t]sin c(fl-/)exp p /(^ -^ j J fcyr'jdr'.

» a /?An--- — (9)

Consequently, the intensity becomes dependent on ę, the angular coordinate.
Combining Eqs. (5) and (6), for an arbitrary value of a , it is straightforward to 

prove that

\u(r,ę)\2 = \u ( r ,n - ę ) \2. (10)

This implies the distribution of intensity at the focal plane to be symmetrical 
with respect to the line that is perpendicular to the dislocation half-line and that intersects 
the half-line at centre of the spiral. This symmetry also follows directly from an 
expansion of the diffraction field under study in terms of Laguerre-Gaussian modes [11].

Another obvious feature is the variation of the optical field with the slope a at the 
optical axis (r = 0)

w(0, ę)  = 271
exp (/A y/)

exp(ian) R0AR sine (a). GD

4. Approximate approach
If the apertural ring is thin, that is AR «: R0, then Eq. (5) simplifies to**

2n

u(r, q>) R0hR J exp(/a<p')exp^-i7:-^r cos(<p- <p')Jd<p'.
o

( 12)

*Note that for the calculation of the field at the optical axis, the series (9) has to be summed up first 
for a nonzero value of r, and then the limiting value of the sum for r -»  0 is determined.

**Note that a similar expression can be derived also for the field at a distance z from the plate 

2
exp

u(r, (j£>;z) =
ik z +

r + R
2z

/Az

2n
R0&R J exp(ia(p')e\p^-ik cos(<p- <p')jd<p'.

o
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As can be expected from the property of symmetry derived earlier, the behaviour of 
the pattern along that line of symmetry should be of significance. We have to 
distinguish between two cases: above the dislocation half-line (p = n/2, and under it, 
ę  ~ 371/2.

As noted previously, the axial value of the optical field varies as the sine function 
of the argument a, see Eq. (11). What can one infer from this axial behaviour as regards 
the variation of the diffraction pattern along the line of symmetry? One can expect that 
when a varies between two neighbouring integers, the whole diffraction pattern 
gradually shifts. To support this hypothesis, it is convenient to employ an asymptotic 
expansion of Eq. (12).

Pattern along the line o f symmetry above the dislocation half-line. In this case, 
Eq. (12) can be rewritten to the form

u(r, ę) = In  eX^ -- R0&R exp(ian) j J - k  (13)

where Ja is Anger’s function [13].
Using the property Ja(-£) = J_a(£) and the asymptotic formula for J_a(|£|) [14]

J- ^ J 5 COS( la  + 2 n - 4 n)
Eq. (13) simplifies to

u{r,(p) = 2n r qa r  exp(ian) I
lA f Ą

1 2 f  cosl(k rI ° i n i
JnkrR 0 1l k / + 2 n ' 4 nJ

(14)

Pattern along the line o f symmetry under the dislocation half-line. The optical field 
is expressed by the relation

u(r,cp) = 2n —~P̂ ~  /?0A/?exp(/aJt) -y^j, (15)

and its asymptotic expansion as

“('•>”) ■ 271 "ô P ( “>”) J £ r0 C0S(* T  " 2 * ~ H  <16>
Comparing Eqs. (14) and (16), we can see that a is with the plus sign in the argument 

of the cosine function of the first expansion, while a is with the minus sign in the 
second expansion. This simple fact has a significant consequence. With an increase of 
a from zero, the diffraction pattern or more exactly its maxima and minima shift down 
the line of symmetry. This is also obvious from Fig. 3 where variation of the field 
amplitude along the line of symmetry is shown for the slope a from 0 to 2.
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Fig. 3. Variations of the field amplitude along the line of symmetry. The numbers at the curves denote 
the corresponding values of the slope a.

Finally, we should try to give an answer to the question whether the Eq. (12) can 
be expressed by means of well-known mathematical functions. For this purpose, we 
express the second exponential function as a product of two exponential functions, 
namely

exp
r rR0
- i k — cos((p- (p exp

■ rR0 i  r rR0 -i
-i&— costpcosęrj x exp^-ik—  sintpsintp'J.

(17)

The first term of the product can be expanded into the Fourier series

T rRo 1 v-i f - i l n \  frR 0 \Qxp^-ik—  costpcostjp'J = 2^ exp |^-y-Jyz^—  cosęjexp(il(p').
i = -«

(18)

Combining Eqs. (12), (17) and (18), we arrive at

u(r,qj) = 2^ ^ R0AR exp(ian) ^  exp ( y ) y( ^ c o s ^ y a + ^ - ^ s i n ^ .
/ =  - o o

(19)

5. Numerical approach

As the optical field u0 is independent of r' the integral with respect to r' in Eq. (5) can 
be evaluated by means of elementary integration techniques, and only the integral with 
respect to ę '  remains to be calculated.
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The expression for the optical field

2n

u(r, ę) exp (iky/) r 2 f g !{ [ ( i  + e - i o  l )exp (- i( \  + e)<r)] 

A / 0

-  [(1 -  £ - io ~ l ) exp(-i'(l + £)cr)]} exp (iaę ')dę ' (20)

a=0.1a=0

-c  -

a=0.2

a=0.3 a=0.4 a=0.5

-0 4- j  -4

a=0.6

•2 0 -1 2 -0  4 0 4 1 2 2.0

a=0.7 a=0.8

Fig. 4. To be continued.
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a=2a=1.8

-1 2 -0  4 0 4 1.2 2.0
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Fig. 4. Contour plots of the Fraunhofer diffraction pattern for the slope a from 0 to 2.
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is used for numerical calculations. Here,

. rRo , ,, A Ra  = k —-  cos(<p- (p ), e = — .
/  2/*o

6. Numerical results and discussion
The variation of the Fraunhofer diffraction pattern from the spiral plate, illuminated 
by a normally incident coherent plane wave, with the spiral slope is shown by a set of 
intensity contour plots in Fig. 4. Here e = 0.1 or AR = 0.2R0. The spiral slope varies 
from 0 to 2. The unit of the coordinates in the plots is krR0/f. The plotted values are 
values of the intensity normalized to the maximum intensity in the area investigated 
for each particular value of the slope a. They are represented by grey levels, with the 
black and white levels corresponding to zero and one, respectively. The maximum 
values of the intensity decrease with the increase of the slope a. For example, the 
maxima for a = 0 and a = 2 differ by about a factor of 5.

As can be seen from the set, the diffraction pattern loses radial symmetry when the 
slope a differs from an integer, in agreement with Sec. (3). The pattern is symmetric 
with respect to the vertical line. While the slope a increases from zero, the pattern 
tends to deform and shifts down the line of symmetry. When the slope a approaches 
unity, the pattern becomes more and more radially symmetric. With further increase 
of the slope a, the diffraction pattern, again, loses its radial symmetry, and shifts down 
until the radially symmetric pattern for a = 2 is obtained. As regards the axial intensity, 
it is nonzero only when a differs from 1 and 2, as predicted in Sec. (3).

It can be concluded that the predictions of the approximate model in Sec. (4) prove 
to be correct.

7. Conclusions
Fraunhofer diffraction patterns from a spiral phase element with an annular aperture 
are studied within the frame of the scalar wave theory. Attention is paid to the role of 
the parameter a, the slope of the variation of the phase at the output from the element 
with the angular coordinate. Extensive numerical results are presented for the slope a 
varying from 0 to 2. In the case of a thin aperture, analytical formulas for the diffraction 
field are derived. Basic tendencies in the shape of the diffraction pattern can be 
predicted from the behaviour of the field along the line of symmetry of the pattern.
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