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Letter to the Editor

Accelerated Monte Carlo method for computation
of photon migration by matrix description of photon direction
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A new accelerated Monte Carlo method that uses matrix description of photon migration (instead
of vector description) for computation of photon migration in highly scattering media is presented.
This method requires two multi-clock floating-point instructions (one division and one square root
operation) less for each scattering event than the standard method. Theoretical considerations show
that the new method reduces calculation time about 4% for personal computers with a one-pipeline
floating-point coprocessor, or more on computers having multi-pipeline floating-point units. Tests
performed on selected types of personal computers have shown a few percent (from 2.5% to 6%)
decrease in computation time when the new method was used.
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1. Introduction

In order to analyze photon migration through highly scattering media, the radiative
transport equation must be solved. Approximate analytical solutions have been
obtained by the diffusion approximation or the random-walk theory, whereas
numerical solutions can be obtained both with Monte Carlo simulations and with finite
-element method. The advantage of the Monte Carlo method is that it does not place
any restrictions on boundary conditions and distance between the light source and
the observation point. However, the Monte Carlo simulation needs substantial amounts
of computations — many hours or even days on contemporary computers. In this letter
it will be shown that by introducing a matrix description of photon direction calculation
time is reduced without a loss of accuracy of computation. This modification can be
used independently of other methods (like fractional sampling method [1] efc.) for
computation time reduction.

2. Monte Carlo solution

A Monte Carlo solution involves tracking simulated photons from collision to
collision. In collisions the photons change directions or are absorbed. The reflections
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and refractions of light on boundaries between media that have different refractive
indices are also taken into account. The most time-consuming work is computation of
photon paths between collisions. It is done in a four-step loop until the photon intersects
any boundary (between regions) or it is absorbed:

Step 1. For a known photon direction s, a random step size s, is calculated as
s, =-In(&)/(u, + u,), where u, is the scattering coefficient, x, the absorption
coefficient, and &, is a random number uniformly distributed over the interval (0, 1].
The new position r' of the photon is given by r'=r + s,s.

Step 2. A check is made whether the photon crossed a boundary between two media
having different optical parameters while moving from position r to position r'. If yes,
position r'’is replaced by position r"’ lying on the boundary and a new photon direction
s’ and a new photon weight w' are calculated using refraction and reflection laws
(efficiency of the algorithm is improved if the photon weight is introduced to partial
reflection and absorption computation).

Step 3. Absorption is taken into account by calculating a new photon weight
w'=wu/(u, + u,), where w is the photon weight in the old position r. If the new
photon weight w'is smaller than a prescribed limit, variance-reducing techniques are
used, in particular “Russian roulette” or “splitting” methods [2].

Step 4. Finally, the new direction of photon movement s’ is found. The deflection
of a photon once it is scattered is specified by the phase function p(s’, s). Since
the phase function depends only on one parameter — deflection angle 6 between
directions s and s’, several functions have been discussed in literature (e.g., isotropic,
Henyey—Greenstein) to enable the best fit to experimental data [3—7]. For example, in
the Henyey—Greenstein phase function, which describes single scattering in tissue very
well, the sine and cosine of the angle & are given by [4]:

1 g Y
——-1+£—[———l&——j if g#0

cosf = 28 I-g+2g5

28, if g=0

)

sind = A1 —c052€

where &, is a random number which is uniformly distributed over the interval [0, 1]
and g is an anisotropy factor which equals (cos ) and has a value between —1 and 1.

The azimuthal angle y, which is uniformly distributed over the interval 0 to 2m,
is given by y =2n&;, where &; is a random number which is uniformly distributed
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over the interval [0, 1). Having sine and cosine of deflection and azimuthal angles we
can find the new direction of photon movement [8]:
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where s, 5,, 5. are components of vector s, and s, s, s are components of vector s’.
If the angle between the photon direction and z-axis is very small (e.g., 1 —|s.| = 0),

then the following formulas are used:

v
1]

s; = sin@cos y
sy' = sinfsiny 3)
s] = sign(s,)cos @

where sign(s,) returns 1 when s_ is positive, and it returns —1 when s, is negative.

After step 4 we return to step 1. Steps from 1 to 4 are repeated for all traced
photons.

To get reliable simulation results, the number of input photons should be big
enough (very often bigger than one million). The result of such simulation is spatial
distribution of radiance or power density in the medium or power density on the surface
of the medium, rather than information about paths of individual photons. Therefore,
modifications to the above method do not need to preserve paths of individual photons
for given random numbers (&, &, &) as long as resulting distribution of radiance or
power density is unchanged in statistical sense.

3. Matrix modification

Let us consider a modification to the method outlined above, in which the direction
of propagation of a photon is given by matrix K = [k, Kk, kz]T (instead of vector s),
where three orthogonal unit vectors ky = [k, k), k.1, Ky = [k, k,,, k], and
k, = [k, k., k..] define a local Cartesians coordinate system whose origin is at the
current position of the photon and k, coincides with direction in which the photon
propagates. New direction of the photon is obtained by rotating this system using Euler

rotation theorem. The most common “x-convention” is used where the first rotation is
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by an angle y;; about the z-axis, the second is by an angle 8; about the x-axis, and the
third is by an angle ¢, about the z-axis (again). If y, = w—n/2, ;= 6, and @ is
chosen in such a way that k,, = 0 and signs of k,, and k_, are opposite, resulting paths
are identical with those obtained from (2). Noting that statistical distribution of sine
and cosine of a random angle y are equal to those of sin(w — n/2) and cos(y — m/2),
respectively, and statistical distribution of azimuthal angle does not depend on ¢, we
can set yy = v, 0 = 6, and ¢ = 0 in Euler formulas, which then become:

ki = cos@cosyk,  + cosOsinyk, —sinbk,,
kyj; = cosyk, —sinyk, “)
kl; = sin@cos yk,, +sinf@sinyk, + cos Ok,

where i =x, y or z.

Comparing (4) with (2), it can be seen that the modified method needs 15 multipli-
cations and 9 additions more than the standard method, but one division and one square
root operation less in the loop from step 1 to step 4. Current personal computers need
much more time to calculate the square root of a number or divide two numbers than
to multiply or add two numbers (see Tab. 1). Comparing these times we can expect
that additional multiplications and additions will need less computing time than the
division and square root operations they replace. The time gain could be even bigger
because some microprocessors can perform more than one multiplication or addition
at the same time (by more than one floating point unit or using vector operations such
SSE2 in Intel Pentium 4).

Table 1. Latency/throughput™ time (clock cycles) for double precision floating point instructions
[9-11].

Microprocessor +— X / sqrt

Intel Pentium II/I11 2/1 52 32/32 28/28
Intel Pentium 4 5/1 72 38/38 38/38
AMD Athlon 4/1 41 20/17 27/24

“Throughput is pipeline throughput between non-conflicting instructions.

To estimate the gain of the modified method, Tab.2 presents how many
mathematical operations are required and how many clock cycles one loop takes (steps
1-4) when formulas (4) are used instead (2). In the estimation, only floating point
operations were taken into account, as they need much more time than integer or
control operations (often performed concurrently with floating point operations by
different units of microprocessor). For highly scattering materials we can also assume
that the computation time for instructions outside the loop (photon generation and



Letter to the Editor 981

Table 2. Number of floating-point instructions per iteration (loop).

Step +— x / sqrt sin cos In
1 3 52 0 0 0 0 1
2 2be 0 0 0 0 0 0
3 1° 1 0 0 0 0 0
44 3 72 1 1 1# 28 0
+vec.t 7b 13 1 1 0 0 0
+mac.f 15 28 0 0 0 0 0

#Assuming that random number generator needs only one floating-point multiplication;

bComparison of two numbers needs one floating-point subtraction;

°If photon does not cross a boundary;

dCommon operations for vector and matrix description of photon direction;

“Only for vector description;

fOnly for matrix description;

£Sine and cosine of i can be calculated by some microprocessors in one floating-point sincos instruction.

collection, photon propagation through boundaries of materials, efc.) may be
neglected, compared to the total time of instructions inside the loop. Therefore,
the first approximation of the gain we obtain by adding clock cycles of all floating
-point instructions in the loop. To estimate the gain for the most popular computers
(i.e., PCs), let us sum all clock cycles of the loop. Using data from Tabs. 1 and 2 for
Intel Pentium II/III microprocessors (that need 125, 124, 137, and 111 clock cycles
for sine, cosine, sincos, and In instruction, respectively [9]), we obtain 560 and 538
clock cycles for the method based on vector description and matrix description of
photon direction, respectively. Thus, we can expect that the new method could reduce
calculation time by 3.93% during Monte Carlo simulation of photon migration in
a highly scattering material. Real gain could differ from that given above because
we have not taken into account the latency time of pipeline-dependent instructions,
latency time for reading data from memory efc. The gain estimation for Intel Pentium
4 and AMD Athlon XP processor is more difficult, as they can compute more than one
double-precision floating-point instruction at the same time. Beside the floating-point
coprocessor, Intel Pentium 4 has a single-instruction multiple-data (SIMD) unit that
can compute two multiplication or addition instructions at the same time [10] and AMD
Athlon XP has three specialized floating-point units (FSTORE, FADD and FMULT)
that compute multiplication or addition instruction at the same time independently but
have to cooperate when more complicated instructions (like sine, square root,
logarithm, etc.) are computed [11].

4. Verification

To verify the gain, two computer programs for Monte Carlo photon transport in highly
scattering materials were tested. The first is MCML program developed by Wang and
Jacques written in C language [8] (available from Internet [12]) and the second is
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SCATTER program developed by the author and written in C++ language. The original
MCML program uses vector description of photon direction, therefore it was rewritten
to use the matrix method. The SCATTER program can use the vector description as
well as the matrix description of photon direction. The programs were compiled with
an Intel C/C++ compiler version 8.0. The tests were conducted on personal computers
using Intel Pentium III, Intel Pentium 4, and AMD Athlon XP processors for one-layer
and three-layer structures made from highly scattering materials. All tests have shown
a few percent gain (from 2.5% to 6%) when the modified method was used.

5. Conclusions

Presented new method is easy to implement in existing computer programs for Monte
Carlo simulation of photon migration in highly scattering materials. Although the few
percent reduction of calculation time which this method offers may not seem
significant, it becomes so for computations lasting several hours or days [13].
Moreover, further improvement is expected when multi-pipelines data processing is
used (by supercomputers or PC computers in the future) because it is easier to
implement multi-pipelines data processing for simple computer instructions like
multiplication or addition than for complex instructions like sine, cosine, square root,
logarithm, etc.
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