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We propose areal time volume clipping method which is capabl e of using several analytical planes
for virtual clipping, in order to display internal anatomical structureswithin volumetric data sets.
A singleproxy planeisused for computation of thedirection of aray that iscast from the viewpaint.
Intersections between the rays and the planes are computed on graphics process unit (GPU).
The start and end points for each ray are determined by analyzing relationships with the ray
direction, intersections and the normal of planes. Then the volume integral is computed along
the ray from the start point to the end point. To obtain immediate visual feedback of clipping
effects, weimplement translation and rotation of planes on GPU to interactively change the shape
of clip object. At last, several experiments were performed on a standard PC with a GeForce
FX8600 graphics card. Experimental results show that the method can freely clip and clearly
visualize volumetric data sets at real time frame rates.

Keywords: planar volume clipping, graphics process unit (GPU) ray casting, single proxy plane.

1. Introduction

Visualization techniques include surface rendering and volume rendering. In surface
rendering techniques, intermediate triangl es of iso-surfaces must be extracted from 3D
volumetric data sets and then the triangles are rendered using traditional computer
graphics hardware. It can achieve interactive frame rates. However, the quality of
the rendered imagesis not high, dueto theloss of details during the extraction process.
While in volume rendering techniques, extraction of polygons is not required and
the volumetric data set is directly rendered according to a transfer function specified
by users, soit can produce high quality images. But it ismemory and time consuming.
Ray casting algorithm is one of the image space volume rendering techniques. It can
generate high quality images and often be used in many applications. It can achieve
high rendering frame rates on high end workstations and specialized volume rendering
hardware (such as VolumePro [1], etc.). However, it is unable to obtain interactive
frame rates on the popular PC platform without graphics hardware.

Many accel eration techniqueswere proposed to speed up the bruteforceray casting
algorithm. One kind of these techniques is the acceleration technique based on space
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Fig. 1. Axis-aligned (a) and view-aligned resampling slices (b).

leaping, which can avoid many empty resamplings without |oss of image quality, such
as cylindrical approximation of tubular organs presented by ViLanova et al. [2],
spherical approximation of tubular organs proposed by SHARGHI and RickeTTs [3]. But
these methods require a complicated or time-consuming preprocessing. Another kind
of these techniques is based on atradeoff between image quality and rendering speed,
such as two-phase perspective ray casting for interactive volume navigation presented
by BraDy et al. [4], screen and object adaptive sampling, etc. The third kind of
accel eration techniques is based on graphics hardware.

With the rapid development of computer game industry, consumer level graphics
cards have huge computation performance. There aretwo typical approaches based on
graphics cards, including texture based volume rendering and graphics process unit
(GPU) based volume rendering. The texture based volume rendering was originally
presented by CuLLip and Neumann [5] and further developed by CaBraL et al. [6].
The algorithm can directly utilize the texture mapping capabilities of graphics
hardware by proxy resampling planes, which can be either axis-aligned [7] with three
sets of 2D texture stacks or view-aligned [8] with one 3D texture, as shownin Fig. 1.
It can achieve interactive frame rates, but it produces relatively low image quality,
especialy in the cases of close views. As shown in Fig. 2, we can clearly observe
circular artifacts when the viewpoint is located within the human trachea. The quality
of rendered image depends mainly on the number of proxy surfaces. If the number of

Fig. 2. Circular artifacts with close views.
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proxy surfaces increases, the rendering speed becomes reduced. Up to now, most of
the modern graphics cards have flexible capabilities of programmability on GPU.
These capabilities|ead to the rapid devel opment of GPU based volume rendering. And
graphics hardware has become preferred technique for the standard implementation
of ray casting. KRUGER and WESTERMANN [9] proposed a GPU based ray casting.
BenToumi et al. [10] proposed a GPU based shear-warp al gorithm. GPU based volume
rendering algorithm can generate high quality images at interactive frame rates. GPU
can also be used in traditional graphicsrendering tasks. Reis et al. [11] presented high-
-quality rendering of quartic spline surfaces on the GPU. Kim et al. [12] presented
vertex transformation streams based on GPU. Flexibility of GPU improves parallel
computation performance in many time-critical applications [13, 14].

Transfer function is very important for volume rendering. However, rapid
specification of an appropriatetransfer functionisusually difficultinpractice. Therefore,
volume clipping becomes an important compensatory tool for difficulty in designing
transfer function. Clip planes are frequently used in texture based volume rendering.
For instance, Van GELDER and Kim [15] used clip planes to specify the boundaries of
the data set in 3D texture-based volume rendering, thus planar volume clipping was
implemented for texture based volume rendering. WEsTERMANN and ERTL [8] presented
avolume clipping method using astencil buffer. The clip object hasto be rendered for
each dlice to set the stencil buffer correctly. Weiskorr et al. [16] presented clipping
techniques based on avolumetric description of clip objects. Clip objects must befirst
voxelized and represented by a 3D volumetric texture. DIEPSTRATEN €t al. [17]
proposed another depth-based clipping method for depth sorting semi-transparent
surfaces. The method isrelated to virtual pixel maps[18] and dual depth buffers[19].
Tiepk et al. [20] used a similar method to visualize attributed volumes by ray casting.
WiLLiamvs et al. [21] presented a volumetric curved planar reformation for virtual
endoscopy.

In this paper, we propose a real time visualization method based on GPU ray
casting, which is capable of using multiple planes for convex volume clipping. This
paper is organized as follows. Section 2 introduces traditional GPU based ray casting.
In Section 3, the single proxy plane based GPU ray casting is presented. Section 4
discusses geometrical transformation of clip planes. In Section 5, some experiments
are described. At last, conclusions are given.

2. Traditional GPU ray casting

The algorithm presented by SteemAlIER €t al. [22] is the classical GPU ray casting,
within which the data set is stored as a 3D texture to take advantage of the built-in
tri-linear interpolation in graphics hardware. In their algorithm, a bounding box for
the data set is created, and coordinates of start and end points for each ray are encoded
in the color channel of the rendered surfaces of the box, as shown in Figs. 3a and 3b,
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Fig. 3. Rendered colors of front (a) and back (b) surfaces of the bounding box of the 3D texture which
encode the start and end points, respectively.

respectively. The color of the front surfaces is regarded as the start point for the ray
casting process. And the color of the back surfaces is regarded as the end point.
Theray direction at any given pixel can be computed by subtracting the color of front
surfaces at the pixel from the color of back surfaces in the same position. Two-pass
rendering is performed [23], that is, one pass for the front surface and another for
the back.

3. Single proxy plane based GPU ray casting

In the GPU ray casting algorithm proposed by CHu et al. [24], which is different from
the classic GPU ray casting, only asingle proxy planeisused to compute ray equations
and ray-plane intersections are computed by analytical geometry on GPU, instead of
the two-pass rendering. In their algorithm, six planes of the bounding box are used.
We extend six planes of the bounding box to an arbitrary number of planes, and these
planes are not required to be parallel to one of xy, yz and xz coordinate planes.
Therefore, our method is more flexible and more useful for volume clipping.

3.1. Single proxy plane

In the classic GPU based ray casting algorithm, six faces of the bounding box are
rendered first to get theend point for ray termination whilefront face culling isenabled,
and six faces of the same box are rendered again to generate the start point for ray
casting. In other words, it has six proxy planes for encoding information of each ray,
asshownin Fig. 4. Computation of start and end pointsis automatically completed by
rendering six proxy faces twice.

Ray-plane intersections can also be calculated by mathematical analytic geometry
on GPU. A ray direction must be given before computing intersections of rays and
planes. As shown in Fig. 5, a plane specified by OpenGL’s GL_QUADS function is
first rendered to generatearay direction. But inthe Chu’ salgorithm[24], the six planes
must be parallel to one of xy, yz or xz coordinate surfaces. Because the orientation and
the number of planesarefixed, it hasno clipping function and that limits the technique
to be widely applied. Our algorithm allows users to specify arbitrary orientation
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Fig. 5. Single proxy plane.

and number of planes by adding some actual clip planes, as shown in Fig. 5. And al
the original planes of the bounding box and actual clip planes can be regarded as
ordinary clip planes.

3.2. Computation of ray directions

Suppose that M ,,,, isthe model view matrix consisting of atranslation matrix M+ and
arotation matrix Mg, P, and P, are the same vertex in the world and eye coordinate
systems, respectively. We have

I:)ezvaPW:MTMRPW (1)

Asshown in Fig. 6, the left-handed camera coordinate system hasthe same origin,
y and z axes as the right-handed eye coordinate system, but its x axisis just contrary
to x axisin the eye coordinate system. A fragment vertex P, in the proxy plane can be

Proxy plane

Fig. 6. Cameralocation in the eye coordinate
system.
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used to generate the normalized direction of the ray in the eye coordinate system for
that pixel. The ray direction D, can be computed by

D, = normalize(P..xyz) 2

In Equation (2), we adopt the symbol denotation used by OpenGL shading language.
P..xyz stands for a new vector consisting of the first three components of the 4D
homogeneous coordinates.

3.3. Computation of ray-planeinter sections

Since the ray direction is computed in the eye coordinate system and its bounding
box is defined in the world coordinates, so we must transform the ray direction back
to the world system and compute the intersections in the world coordinate system. So,
we have

D,, = normalize [(M;{lPe).xyz] 3

w
According to the analytic geometry, the parameterized equation of aray isdefined as
Py-XyZ = Pge.Xyz+D,, - t 4

where P, is the 4D homogeneous coordinates (X, Y, , 1), Pey, is the eye position
(viewpoint), t is the distance from the eye position. According to the analytic
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Fig. 7. Determination of start and end points. The viewpoint outside (a) and inside (b) the clipped volume.
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geometry, positive t stands for points having the distance t along the ray direction D,,,.
And negative t denotes points with the distance t along the contrary ray direction -D,,.
A planeis usually defined as

Ax+By+Cz+D =S-P =0 (5)

where (A, B, C) is the normalized normal of the plane, S=(A, B, C,D) and
Py = (X, y, z, 1) are homogeneous coordinates. Therefore, a plane equation can be
defined as the dot product of two vectors S and P,,. Combining Egs. (4) and (5), we
obtain the intersection between aray and a plane by

(o Axeye+ Byeye+ Czeye+ D S. Peye

AXx4 + Byy + Cz, - Sxyz-D,, ©
where Pg is the homogeneous coordinates of the eye (Xeye, Yeyer Zeyer 1) and D, is
the 3D vector of the ray direction (Xy, Yy, Zy)-

In Equation (6), when the denominator d = S.xyzD,, is equal to zero, t becomes
infinite, and it means that there is no intersection between the ray and the plane. In
other words, theray is parallel to the plane.

3.4. Determination of start and end points

In our method, a plane splits the 3D space into two parts which are called saved part
and discarded part. We keep the saved part that the normal of the plane pointsto, whilst
the discarded part is deleted. Several planes are often used for convex volume clipping
and each ray may have several intersectionswith clip planes. How to select two points
asstart and end pointsfrom theseintersectionsisakey problem to correctly implement
convex clipping.

3.4.1. Arayisparallel toaplane

If aray is parallel to a plane and the eye is located in the discarded part, current ray
should be discarded as there is no intersection. In the case of Fig. 7a, Ray3is paralel
to Planel and the eye is in the discarded part of Planel, so we can discard Ray3
immediately. If aray is parallel to aplane and the eyeisin the saved part, we need to
compute possible intersections with other planes. In the case of Fig 7b, because Ray2
isparallel to Plane5 and theeyeisin the saved part of Plane5, Ray2 cannot be discarded
and continue to be processed to compute intersections with other clip planes.

The criterion which can determine if the eye P isin the saved part of plane Sis
defined as

Axeye+ Byeye+ Czeye+D = S. Peye>0 @)

If Equation (7) is satisfied, we think that the eye P is located in the saved part
of plane S. Otherwisg, it isin the discarded part. Equation (7) isjust the numerator in
Equation (6).
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3.4.2. Sorting classified inter sections

If aray isnot parallel to aplane, there must be an intersection. Ray-planeintersections
are classified into two categories. One category iscomposed of such intersectionswith
an angle less than 90 degrees which the ray and the plane normal form, and these
intersections are denoted by parameters tn(1), tn(2), ..., tn(M). Another category
consists of intersections with an angle greater than 90 degrees, represented as
tf(1), tf(2), ..., tf(N). The criterion for judging the angle less than 90 degrees is
defined as

Axy+Byy+Czy = S.xyz-D, >0 (8)

Equation (8) is just the denominator d = SxyzD,, in Eq. (6). Then we compute
themaximum value of parameter tinthefirst category of intersectionsand the minimum
value of parameter t in the second one. The process can be formulated as

tn = max{tn(l),tn(Z), ...,tn(M)} 9)

tf = min{tf(l), tf(2), ..., tf(N)} (10)

At last, we must decide whether or not the two parameters are valid. If tf <tn
or tf <0, the ray has no intersection with the convex clipped geometry. In other
words, the two parameters are invalid. When the eye is inside the clipped volume,
the parameter tn for the start point is usually less than 0. In this case, the parameter tn
is set to O, in order to ensure that the start point is not behind the eye along the ray
direction. After the aforementioned processing, tn and tf are the parameters for
the valid start and end points, respectively. Now, we can trace each ray to compute
volume integral from the start point to the end point on the GPU. Asshown in Fig. 7a,
as for Rayl, the start and end points are determined by parameters t, and tg,
respectively. Figure 7b illustrates the eye inside the clipped volume. We obtain
the parameters for start and end points which are t, and t;, respectively. But t, is less
than 0, so the start point parameter is modified to 0. So, the parameters for start and
end points are tg and t5, respectively.

Figure 8 lists GPU codes for computing start and end points. In our implemen-
tation, vector operations are widely applied to take full advantage of intrinsic parallel
hardware computation contained on GPU. We pass all the parameters of clip planes
from CPU to GPU using uniform variables defined by OpenGL Shading Language.
The uniform qualifier is used to declare global variables whose values are the same
across the entire primitive being processed. All uniform variables are read-only and
areinitialized externally either at link time or through the API. The uniform variable
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vec3 Dw=nornalize(FragVertex.xyz);
int i=0;
tn=-1000. 0;
tf=1000. O;
whi l e(i <Cli pPl aneNum
{/*Conpute intersections between rays and planes S[i]*/
n=dot (S[i], Peye);
d=dot (S[i].xyz, Dw);
i f (abs(d)<=0.00001)
{/I*Aray is parallel to a plane*/
i f(n<=0.0)
{ /*The eye is located in the discard part of plane S[i]*/
Nol ter=1;//Discard this ray
break;// Stop searching
}
}el se
{/IAray is not parallel to a plane
t=-n/d;
i f(d>0.0)
{//an angle less than 90 degrees
// cal cul at e maxi mum val ues for first category
tn=max(tn,t);
lel se
{//Cal cul ate m ni num val ues for second category
tf=mn(tf,t);
}
}

i ++;

}
if(tf<tn||tf<0.0)
Nolter=1;// No intersection
el se
{ if(tn<0.0)
{ /*Set the start point to the eye when the eye inside the clipped vol une. */
t n=0. 0;
}
}

Fig. 8. GPU codes for computing start and end points.

S specifies the parameters of clip planes and the uniform variable ClipPlaneNum
stores the number of clip planes. The detailed declarations are listed as follows:
uniform vec4 S[64]; uniform int ClipPlaneNum.

In our implementation, the number of clip planes varies from 6 to 64. We can see
that the flexibility of our method is obvious.

4. Translation and rotation of clip plane

Trandation and rotation of clip planes can change the shape of convex clip objects.
According to the definition of a plane [25], the parameter D is just a negative
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distance to the origin from the plane. As shown in Fig. 9, the trandation vector is T,
so the equation of moved plane becomes

Ax+By+Cz+D'=0 (11)
where
D'=D-ATx-BTy-CT.z (12)

Rotation of aplaneis more complex than translation. To implement plane rotation,
the standard equation of aplanein 3D space (Eg. (5)) is converted to the point-normal
eguation. The point-normal equation of aplaneis defined as

A(X=Xo) + B(y —Yo) + C(z—2) =0 (13)

where (A, B, C) is the normalized normal of the plane, (X,, Yo, Zy) iS @ point Py on
the plane. For convenience, P, is defined as an intersection between the plane and
aray which is cast from the origin and has the normalized direction N = (A, B, C, 1).
So, the ray parameterized equation is

X A
P.xyz: y = |B -1 (14)
Z C

Combining Egs. (5) and (14), we can obtain the parameter of intersection t = -D.
So, the point Py is equal to

Xo A-D
Po-Xyz = Yo| = —|B-D (15)
z, C-D

Now, we rotate the plane normal around the point P,. As shown in Fig. 10, given
arotation matrix Mg, the new normal N' = (A", B', C', 1) is computed by

N'=MgxN (16)

Because the standard equation is used for computing ray-plane intersections on
GPU, the point-normal equation should be converted back to the standard equation.
Combining Egs. (13), (14) and (16), we have

D' = —Py.xyz:N'.xyz (17)
Thus, we obtain the standard equation of the rotated plane as follows

AX+BYy+Cz+D =0 (18)
where A'=N'.x, B'=N".y,C'=N'.z
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Fig. 9. Plane translation.

Fig. 10. Plane rotation.

Fig. 11. Trandation and rotation of two clip planes.

Figure 11 givesexperimental resultsof our convex volumeclipping by interactively
translating and rotating two clip planes.

5. Experiments

We implemented the real time GPU ray casting with our volume clipping techniques
using Visual C++ and OpenGL Shading Language, and then several experimentswere
performed on a standard PC with an Intel E2160 dual core 1.8 GHz processor with
a 2 Gbyte RAM. And a GeForce FX8600 graphics card was installed.

First, we test our methods on a volumetric data set with the viewpoint outside
the clipped volume. The data set was acquired by a CT scanner from a human in
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Fig. 14. Clipping the visible human.

a hospital. The data set is composed of 112 DICOM images with 2D cross-section
imagesize512x512, sothe 3D dataset sizeis512x512x112. Aniso-surfaceray casting
is used for rendering. As shown in Fig. 12, we can find the volume to be correctly
clipped and the rendered images to have high quality. We can interactively alter
the transfer function by simply re-generating the 2D lookup texture or directly specify
different ambient, diffuse and specular colors for the illumination model. So, our
algorithm is very convenient in cases where users need to frequently modify material
optical property.

Second, we navigate into the human trachea of the volumetric data set, in order
to make the viewpoint located inside the volume. As shown in Fig. 13, we can find
that the volume is also correctly clipped and the rendered images have high quality.
Our method can also process RGB color volumetric data sets by modifying the ray
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T abl e. Frame rateswith different viewport sizes and different number of clip planes.

Number of clip planes Viewport size Frame rates [fps]

6 512x512 59.4
9 512x512 58.6
12 512x512 57.9
12 600%x600 39.7
12 800x800 223

casting algorithm and replacing the color transfer function with direct resamplings of
RGB volumes. Figure 14 shows the resulting images with our method for the visible
human color data set using three clip planes.

The size of data sets does not influence the rendering speed with our method, as
long as the data set can be fully loaded into video memory of graphics card. But
the size of viewport obviously influences rendering speed. The number of clip planes
has a little influence on the rendering speed. The Table illustrates rendering speed
under different viewport sizes and different number of clip planes. Experimental
results show that our method can render volumetric data sets with an iso-surface ray
casting in real time. The method provides users with immediate visual feedback.

6. Conclusions

We propose areal time clipping method based on GPU ray casting, which is capable
of using multiple planes for convex volume clipping. The traditional GPU based ray
casting methods often use two-pass rendering of front and back proxy surfaces.
Different from the classic GPU based ray casting, one proxy plane is used and ray-
-planeintersections are computed on GPU. Fragment coordinates encode the direction
of aray that is cast from the viewpoint. And we presented an approach to compute
intersections between the ray and clip planes, and then the start and end points of
the ray are thus obtained by analyzing relationships between the ray direction,
intersectionsand the normal of each plane. Thenthevolumeintegral iscomputed along
the ray from the start point to the end point. To obtain immediate visual feedback of
volume clipping effects, we implement translation and rotation of planes on GPU to
interactively change the shape of clip object. This implementation of GPU based ray
casting has good rendering performance and clipping capability. At last, several
experimentswereperformed on astandard PCwithan Intel dual core 1.8 GHz processor
and a GeForce FX8600 graphics card. Experimental results show that the method can
clip and visualize volumetric data sets clearly at real time frame rates.
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