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Various methods of deconvolution have been developed for several decades, notably in astronomy 
and microscopy. The extension of these techniques to the case of a spatially varied blur is currently 
an open problem. In this work, we consider a zone-invariant point spread function model to take 
into account blur variation in the image. Thus an algorithm has been used where the minimization 
of the criterion is performed in parallel on different areas of the image, while taking into account 
the estimates in the neighboring areas of the sub-images under consideration, so that the final 
solution is the minimum of the criterion where the blur is spatially varied. 
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1. Introduction

The images acquired by the optical imaging systems suffer from degradations due, on 
the one hand, to the intrinsic properties of the instruments and on the other hand, to 
the acquisition conditions. Actual optical imaging systems recognized a considerable 
advance providing high resolution and good contrast photography compared to the first 
telescopes that were invented in the 15th century. Nevertheless, till now they suffer 
from some artifacts mainly due to the inherent limitations of the optical instruments 
as well as the imaging environment. Indeed, optical images are affected by undesired 
blur which is introduced by different distortion sources. For instance, the diffraction 
of light through a small circular aperture or imperfect optical lens produces a blur com-
monly represented by an airy disc [1, 2] which limits the resolution of the acquired 
image. Astrophysical images, for example, appear blurry because of the turbulence of 
the atmosphere. In 3D confocal microscopy, the images present essentially a depth de-
focusing blur and a radial blur associated with the luminous diffraction of the lenses. 
Moreover, a movement of the lens or objects in the scene during acquisition produces 
the motion blur. To remedy the effects of blur on the images, many deconvolution tech-
niques have been developed. 
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For example, in the 3D confocal microscopy, the blur depends on the depth [3–6]. 
Thus, the blur cannot be considered constant at any point of the image. It is then es-
sential to implement a restoration method in which the function of fuzziness (point 
spread function – PSF) is spatially variable. This problem has been studied in previous 
works such as [5, 7–10]. One of the difficulties is the computation time when consid-
ering the sequential formulation of the blur operation. In this paper, we propose to use 
a variable blur model in the field by a variable linear combination of spatially invariant 
fuzzy functions. 

In particular, we consider a constant PSF per zone with regular transitions between 
the zones to avoid edge effects. We also introduce a deconvolution method that is 
adapted to such modeling. More precisely, we use a fast method of deconvolution pro-
posed in [11] which is based on an image decomposition strategy in order to perform 
parallel processing on sub-domains and thus accelerate computation time. We extend 
this method to the case of a spatially variable PSF according to the proposed model. 
We obtain an algorithm capable of reversing a variable PSF spatially by deconvolution 
in parallel on sub-areas of the image considered. The conditions at the edges of the 
zones are fixed in order to obtain a convergent algorithm towards the image sought. 
This avoids the approximations sometimes made during the deconvolution with a spa-
tially variable PSF [7]. 

This work is organized according to the following steps: firstly, we present the 
PSF model that we used. Next, we describe the deconvolution method that we applied 
in this PSF model. Finally, we show the simulation results of the proposed approach 
on a synthetic image.

2. Non-stationary PSF model
The definition of a precise PSF model leads sometimes to consider a variant blur func-
tion at any point of the image. However, restoration with such a model remains a dif-
ficult problem. Indeed, when the impulse response of the imaging system depends on 
the coordinates of the point of the object, we cannot express the direct problem of form-
ing the image as a convolution between the object and the PSF. To reduce the numerical 
difficulty of the problem and keep algorithms fast, we propose to approach a spatially 
variable PSF by piecewise constant PSF model with regular transitions between the 
zones. We decompose the discrete support of an image 

Ω x1
1 … xn1

1, ,{ } x1
2 … xn1

2, ,{ }× ⊂= ℝ2 (1)

in D blocks following a decomposition strategy similar to that proposed in [11]. For 
simplification of writing, we present the method for a decomposition into two zones 
(D = 2). We thus consider two sub-areas Ωk, k = 1, 2 such that adjacent sub-areas over-
lap: Ω = Ω1 ∩ Ω2 and Ω1 ∩ Ω2 ≠ Ø.

Then, we associate to each zone a spatially invariant PSF hk, k = 1, 2. Moreover, 
the change of the PSF from one zone to another is not abrupt. The transitions between 
the zones are managed by weighting functions which make it possible to smooth the 
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variations of the PSF between the zones. We introduce the functions ψ1 ψ2, ∈ ℋ = 
{ f: Ω → ℝ} such that 

i) ψ1(x) + ψ2(x) = 1, x∀ Ω,∈  and 
ii ) 0 ≤ ψk ≤ 1, for k = 1, 2. 

These functions act in the zone of intersection of the sub-areas. Their main role is to 
adjust the conduction of each of the fuzzy functions hk, k = 1, 2, so as to smooth the 
variations of the PSF between the two zones. Thus, we define the object observation 
model through the following equation:

f x( ) ψ1 x( ) h1 * u( ) x( )⋅ ψ2 x( ) h2 * u( ) x( )⋅ b x( )+ += (2)

with u ∈ ℋ being the intensity of the original image, f ∈ ℋ the intensity of the de-
graded image and b(x) Gaussian white noise. By developing the equation of the model 
we can show that the convolution of the image u is performed by a spatially variable 
fuzzy function [12]. We thus introduce the operator R which indicates a “no stationary 
convolution”. An example of two-zone decomposition and an example of weight func-
tions {ψ1, ψ2} are shown in Fig. 1
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Fig. 1. Decomposition into two overlapping sub-domains (a), and example of weight functions {ψ1, ψ2} (b).
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3. Deconvolution of a blurred image by a non-stationary PSF
We will present a restoration method for spatially-variant blurred images. We considered
a block constant PSF model. In this modeling, blocking artifacts are managed thanks 
to an overlapping domain decomposition strategy as well as the introduction of appro-
priate transition functions. Furthermore, object estimation within a framework of the 
considered space-varying PSF was achieved by minimizing a quadratic functional in-
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cluding total variation regularization. For that matter, we extended an optimization 
method based on an overlapping domain decomposition technique to the case of space 
-varying PSF. Computational time is thus reduced by performing a parallel processing 
on different areas of the image at the same time. The convergence of the proposed meth-
od when using a space-varying PSF model was also proved thanks to certain constraints 
on the considered transition functions. In fact, the proposed algorithm works for any 
convex combination of stationary convolution operators and thus avoids the fastidious 
computation in the spatial domain when filtering with a space-varying filter [13]. In-
deed, in the proposed blur modeling, stationary convolution can be rapidly computed 
in the Fourier domain and then combined together using a space-varying weighting 
function. Besides, we should emphasize that the accuracy of the restored image is high-
ly dependent on the choice of a convenient domain decomposition considered in the 
observation model. In fact, each sub-domain should be approximated with the PSF. 
Automatic domain decomposition can be obtained by tolerating certain variation rate 
of the PSF within a given region, as it was previously proposed in [7]. In that method, 
a correlation coefficient between a reference PSF and each of the PSF measured at dif-
ferent points, was computed in order to measure the PSF variation rate and then used 
to define PSF positions.

Once we defined the imaging model, we seek to deconvolve the blurred image. To 
do this, we consider the problem of minimizing an energy function composed of two 
energy terms: the first is a quadratic term that corresponds to the fidelity to the data, 
and the second is a regularization term of type total variation which makes it possible 
to smooth the homogeneous zones of the image while preserving the contours. Con-
sider the following energy function:

J u( ) Ȟ u( ) f– 2
2

2α u∇ 1+= (3)

where α > 0 is a regularization parameter. 
Although the operator Ȟ is spatially variable, it is possible to deconvolute with such 

an operator thanks to the modeling presented in the preceding paragraph. Indeed, the 
numerical calculation of the convolution by the non-stationary operator Ȟ is not carried 
out at any point separately, but it is carried out by calculating the sum of the stationary 
convolution products weighted by spatially variable weight functions. Moreover, in 
order to have a fast algorithm, we propose to minimize the function J (u) with an op-
timization method which was recently developed in [11]. This method has been studied 
in the case of a spatially invariant operator. Its theoretical convergence has been proved 
under certain conditions [11]. It has been successfully applied to signal interpolation and
image in painting problems. We propose to extend this method to the deconvolution 
problem with a spatially variable PSF according to the proposed model. The general 
idea of the method [11] is to subdivide the global minimization problem into sub-prob-
lems of reduced size in order to treat them in a parallel way. The domain Ω is divided 
into N sub-rectangular areas covering. For example, we consider a similar decompo-
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sition to that presented in the previous section for the definition of PSF model. Note 
that it is possible to use decomposition in zones of more irregular shapes as long as 
they satisfy a property of division of the total variation explicated in [11].

The advantage of covering between zones is to avoid a fine analysis in the proof 
of convergence of the method at the level of the interface Γ1 between Ω1 and Ω2 \  Ω1
and the interface Γ2 between Ω2 and Ω1 \ Ω2. We introduce the sub-spaces Vk of H
such that Vk u ∈{= H, support u( ) Ωk⊂ }, k = 1, 2. Thus, a possible representation 
of the solution u ∈ H is given as follows:

u x( )

u1 x( ) if x Ω1 \ Ω2∈

u1 x( ) u2 x( )+ if x Ω1 Ω2∩∈

u2 x( ) if x Ω2 \ Ω1∈





= (4)

where u1 x( ) V1∈  and u2 x( ) V2.∈  By using this decomposition, the minimization of 
the function J(·) can be performed on each of the sub-areas separately. Let us for ex-
ample minimize the functional with respect to u1 in the domain 

Ω1: u1 Arg  Min
u1 V1/u1|Γ1∈ 0=

J u1 u2+( )= (5)

FORNASIER et al. propose to perform this local minimization with a Lagrange multiplier 
method [11] which consists in minimizing an auxiliary function J1

s u1 u2+ u1
l( ),( )  and 

J u1 u2+( )  where u1
l( ) V1∈  in which the variable u1 is not affected by the operator Ȟ. 

This function is given by the following equation:

J1
s u1 u2+ u1

l( ),( ) u1 z1– 2
2

2α u1 u2+( ) |Ω1∇ 1+= (6)

where 

z1 u1
l( ) Ȟ * f Ȟ u2( )– Ȟ u1

l( )( )–
 
 
 

+ Ω1= (7)

and Ȟ(u2) denotes the deputy of the non-stationary convolution operator H. As shown 
in [12] this operator is expressed in the following form: 

Ȟ * v( ) H1
* ψ1v( ) H2

* ψ2v( ) ,+=    v∀ ∈ ℋ (8)

where H1
* ·( ) and H2

* ·( ), H1 and h2 are respectively the deputy operators H1 ·( ) h1
*=  

and H2 ·( ) h2
*.=  Thus, the minimizer of the function J1

s u1 u2+ u1
l( ),( )  on u1 V1∈  

such that u1|Γ1 = 0 is accessible thanks to an algorithm described in [11], based on 
an oblique thresholding theorem [11, 12]. We apply this principle to the restoration 
with the operator Ȟ. The convergence properties of the minimization method proposed 
in [11] are retained for the non-stationary operator. The theoretical study of conver-
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gence is developed in [12]. We limit ourselves here to giving an algorithmic description 
of the proposed solution. The minimization algorithm consists in iterating on several 
processors the local minimizations in order to obtain partial solutions defined on each 
of the sub-areas considered. These solutions are then combined together via Eq. (4) in 
order to obtain an overall minimizer of the function (3). Thus, after initializing ǔ1

0( )  
and ǔ2

0( )  such as u 0( ) ǔ1
0( ) ǔ2

0( ),+=  global [11] consists in iterating the following four 
steps for decomposition into two sub-domains. 

Step 1: energy minimization on the sub-domain Ω1. Initialize u1
n 1+ 0,( ) ǔ1

n( ).=  For l
from 0 to (L – 1), iterate the following equation:

u1
n 1+ l 1+,( ) Arg  Min

u1 V1/u1 |Γ1∈ 0=
J1

s u1 ǔ1
n( )+ u1

n 1+ l,( ),( )=

Step 2: energy minimization on the sub-domain Ω2. Initialize u2
n 1+ 0,( ) ǔ2

n( ).=  For 
m from 0 to (M – 1), iterate the following equation:

u2
n 1+ m 1+,( ) Arg  Min

u2 V2/u2 |Γ2∈ 0=
J2

s u2 ǔ2
n( )+ u2

n 1+ m,( ),( )=

Step 3: u n 1+( )
u1

n 1+ L,( ) u2
n 1+ M,( ) u n( )+ +

2
----------------------------------------------------------------------=

Step 4: 
ǔ1

n 1+( ) ψ1u1
n 1+( )=

ǔ2
n 1+( ) ψ2u2

n 1+( )=





The advantage of the minimization procedure presented is that it makes it possible 
to avoid the sequential and iterative formulation of the usual minimization methods 
which makes the calculation time quite slow. Indeed, steps 1 and 2 are performed in 
parallel on two processors. We show in the next paragraph that numerical experiments 
show good convergence properties in practice.

4. Simulation and result
We performed a first test on a synthetic image of size 128 ×128 pixels, shown in Fig. 2a.
We blurred this image with four different Gaussian PSFs, each corresponding to a giv-
en region. We thus consider overlapping domain decomposition into four sub-domains. 
Their interfaces are depicted in Fig. 2e. The red line corresponds to the lower side of 
the first rectangular sub-domain Ω1, the two green lines correspond to the interfaces 
of the sub-domain Ω2. The blue ones correspond to those of the third sub-domain Ω3
and the yellow line represents the upper side of the sub-domain Ω4. Weighting functions 
as those displayed in Fig. 1 are considered in the proposed distortion modeling. We have
thus considered functions of weights which vary according to the second dimension 
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of the image (see Fig. 1b). Considering a blur variable in both directions of the image 
(such as the blur associated with astrophysical images), the weighting functions of the 
proposed model vary in both dimensions (x, y) in order to manage the blur on the edges. 
We can, for example, choose variable weighting functions in x such as those shown in 
Fig. 1b when it is a horizontal transition between adjoining and variable domains in y,
a vertical transition between domains. The sum of the values of the weighting functions 
must be 1 at any point of the image. In this test, we considered decomposition in 4 zones
whose interfaces are shown in Fig. 2e

a b c

d e

Fig. 2. Original image synthesis (a), blurred image with four Gaussian PSF (b), restored image (c), 
deconvolution with a spatially invariant PSF standard deviation σ = 2.125 (d), and interfaces of the 
decomposition considered (four sub-domains) (e).

. The PSFs considered are Gaussian with zero 
mean and standard deviations σ1 = 1, σ2 = 1.75, σ3 = 2.5 and σ4 = 3.25. The resulting
distorted images are depicted in Fig. 2b. The restored image displayed in Fig. 2c shows 
the relevance of the proposed deblurring method. Note that the reconstruction method 
was performed by considering the same decomposition as that used for the generation 
of the blurred image. The regularization parameter was fixed at α = 2 × 10–5. The set-
ting of this parameter was carried out in an empirical way, i.e., we chose the parameter 
value which contributes to the best result. The algorithm converges after 20 iterations 
which lasted about 12 s for a decomposition into 4 sub-domains and 8 s for a decom-
position into 8 sub-domains. We performed the tests on a multicore machine containing 
4 processors of frequency 1.5 GHz. The method has been programmed with Matlab. 
The evolution curve of the energy function during the iterations (see Fig. 3a) shows 
the numerical convergence of the energy. In order to evaluate the method, we show in 
Fig. 3b the evolution curve of the mean square error (MSE) between the estimated im-
age and the original image during the iterations. In order to see the contribution of the 
proposed restoration method, we present in Fig. 2 the deconvolution result with an in-
variant PSF having a zero mean and a standard deviation equal to the mean of the four 
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standard deviations of the four PSFs used for the image degradation (σ = 2.125). One 
can notice restoration especially in the higher and lower regions of the restored image 
of  Fig. 2d. We calculated the MSE between the estimated object u(x) and the original 
one o(x) using the following formula to assess the accuracy of our estimation method:

MSE u o,( ) 1
card Ω( )

------------------------ u x( ) o x( )–
2

x Ω∈
= (9)

In order to
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Fig. 3. Evolution of the energy function (a), evolution of the MSE as a function of the iterations (b).

 clearly see the advantage of the proposed restoration method, we show 
in Fig. 4
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Fig. 4. The plot of intensity profiles along the optical axis passing through the center of the microspheres. 
The red line corresponds to the original object, the green line corresponds to the blurred object, the blue 
line corresponds to the restored object with the space-variant restoration approach and the dashed black 
line corresponds to the restored object with space-varying PSF.

 the plots of the intensity profiles along the optical axis passing through the 
bead center. The red curve corresponds to the intensity profile of the original object, the 
green curve corresponds to the observation intensity profile, the blue curve corresponds
to the restored object with the space non-invariance approach and the dashed black 
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curve shows the intensity profile of a restored object with the space-invariance as-
sumption.

Numerical experiments show the efficiency of the proposed restoration method and 
the potential interest of the space-varying PSF model. Besides, we should emphasize 
that the accuracy of the restored image is highly dependent on the choice of a convenient 
domain decomposition considered in the observation model. In fact, in each sub-domain
where the blur-variation could be considered as insignificant, we consider a single ap-
proximate PSF. Automatic domain decomposition can be obtained by tolerating certain 
variation rate of the PSF within a given region, as it was previously proposed in [9]. 
In that method, a correlation coefficient between a reference PSF and each of the PSF 
measured at different points, was computed in order to measure the PSF variation rate 
and then used to define PSF positions. 

We were interested in minimizing a criterion including a data term computed as 
a quadratic error between the actual acquisition and the observation according to the 
model. This data term corresponds perfectly to an additive Gaussian noise context. 
However, if we deal with a multiplicative noisy image, e.g., Poisson noise, the energy 
function cannot be written in a surrogate function form. Hence, it should be interesting 
to fit the proposed restoration method to the multiplicative noise case. Moreover, in 
the presented deconvolution method, we considered only one regularizing term which 
corresponds to total variation. It could be interesting to incorporate other regularizing 
terms such as wavelet regularization mainly to avoid the staircase artifact introduced 
by total variation. In that case, one should study the splitting of the regularizing crite-
rion as it was previously done in [11].

5. Conclusion

We have presented in this paper a fast method of non-stationary deconvolution where 
a constant zone-specific PSF model has been considered. After having defined the spa-
tially variable PSF model, we adapted a deconvolution method based on a zone mini-
mization strategy of an energy function. The computation time is thus accelerated by 
performing parallel processing on the various areas of the image. The simulation of the
method on a synthetic image shows its effectiveness. 

Its application to real images, in particular images of fluorescence microscopy or 
astrophysical images, is possible by equipping itself with a map of PSF measured in 
the different regions where the blur can be considered invariant. Moreover, in several 
situations, the fuzziness associated with the acquisition system varies in a way that is 
not predictable a priori as a function of the acquisition conditions and of the scene ob-
served. 

It is then interesting to estimate the spatially variable vagueness and to extend the 
proposed method to the case of blind deconvolution. Moreover, in the proposed de-
convolution method, we used a regularization term by total variation. It is possible to 
improve the restoration results by introducing a more appropriate regularization term 
such as regularization on the wavelet coefficients [14] in order to avoid certain artifacts 
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introduced by the total variation (the staircase effect). In this case, it will be necessary 
to propose the transformations necessary to apply the minimization algorithm by decom-
position into sub-domains.
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