All optical binary ASK demodulator using photonic crystal based nonlinear ring resonator

MAHSA NARIMANZADEH, ALIREZA ANDALIB*

Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

*Corresponding author: andalib@iaut.ac.ir

In this paper we will propose and design an all optical amplitude shift keying demodulator using a photonic crystal based nonlinear ring resonator. The proposed structure will be designed such that it can generate digital 0 and 1 based on the amplitude of the input signal. The working mechanism is based on controlling the optical behavior of the resonant ring using optical intensity. The proposed structure was simulated using plane wave expansion and finite difference time domain methods. The simulation results show that the rise and fall times for the proposed structure are 0.5 and 0.1 ps, respectively.

Keywords: photonic crystal, amplitude shift keying (ASK), optical demodulator, delay time.

1. Introduction

Amplitude shift keying (ASK) is a form of amplitude modulation which is used for representing digital data based on variation of signal amplitude. Optical modulation is a promising way to transmit low frequency digital data using high frequency carrier waves. The simplest way of using ASK modulation is to choose two different wave amplitudes for digital 1 and 0. After receiving the modulated signal, one needs an all optical demodulator to convert the received waveform into a binary code.

Due to their high band width and high speed, optical waves are very useful for transmitting data and can be used as excellent carrier waves in different modulation techniques. For working with optical waves one needs optical devices, whose inputs, outputs and processing parts should be purely optical.

In last decades it has been shown that photonic crystals (PhCs) [1, 2] which consist of regular arrangement of dielectric materials with periodic refractive indices can be very useful for designing different kinds of optical devices [3–5]. The realization of optical filters [6–10], demultiplexers [11–16], logic gates [17–22], coders [23–29], adders [30–35] and analog to digital converters [36–40] proves the ability of photonic crystals for playing a crucial role in the next generation of all optical networks.
An all optical phase shift keying (PSK) demodulator was designed using 2D PhCs [41]. The proposed structure can produce binary 0 and 1 codes considering the phase of the received optical signal. The proposed structure works base on constructive and destructive interference of the input signal with the reference signal. Besides this PSK modulator, some methods also have been proposed for designing all optical analog to digital converters [39, 42, 43]. But no works have been proposed for designing ASK modulators using PhCs.

In this paper we are going to design an all optical binary ASK demodulator. The proposed structure works based on threshold switching principle [44, 45]. In the final structure, two binary 0 and 1 codes can be produced based on the amplitude of an input signal.

2. Design procedure

The basic structure used for designing the proposed structure consists of periodic 2D array of dielectric rods with square lattice. The radius and refractive index of the dielectric rods are 122 nm and 3.46, respectively. The lattice constant of the basic structure is 581 nm. As shown in Fig. 1, the main photonic band gap of the fundamental structure is at 0.28–0.42 normalized frequencies, which is equal to 1450–1210 nm wavelength range.

The proposed ASK demodulator was designed using a nonlinear ring resonator. The nonlinear ring consists of 3 main parts, a 5 × 5 square shaped core, 24 nonlinear rods and the outer shell of the ring. The nonlinear rods are of doped glass whose linear refractive index and the Kerr coefficient are 1.4 and 10^{-14} m^2/W [31]. Two orthogonal waveguides were created near the resonant ring. These waveguides were named BUS and DROP. The front and end side of the BUS were labeled as B and O. The third waveguide was created some rows below the BUS which connects I to the resonant ring.

![Fig. 1. The band structure diagram of the basic PhC.](image-url)
The final structure is shown in Fig. 2, in which B, I and O are bias, input and output ports, respectively.

3. Simulation and results

The spectrum diagram of the nonlinear resonant ring at low optical intensities is shown in Fig. 3. As depicted in Fig. 3, the nonlinear resonant ring has a resonant mode at 1560 nm. Also Fig. 4 shows the output spectra for three different values of the refrac-

Fig. 2. The proposed structure for optical ASK demodulator.

Fig. 3. The wavelength spectrum of the resonant ring.
The refractive index of nonlinear rods, which shows that increasing the refractive index will shift the resonant mode ring toward upper wavelengths. This proves that one can control the optical behavior of the resonant ring using high optical intensities.

For simulating the final structure, we used two optical Gaussian sources at B and I ports. Both has the same wavelength which is equal to 1560 nm. The optical intensity of B is constant and equal to 1 W/μm². Two different optical intensities were used at I. When the optical intensity at I is about 0.2 W/μm², the optical intensity near the resonant ring is smaller than the optical intensity required for triggering the nonlinear effects and shifting the resonant mode, therefore the resonant ring can drop the optical waves from BUS into DROP. As a result, no optical waves can reach the output port, so it remains OFF (i.e. logic 0). However when the optical intensity at I is about 1 W/μm²,
this amount of optical intensity can change the resonant mode and trigger the threshold switching mechanism. Therefore the resonant ring cannot drop the optical waves from BUS into DROP. As a result, the optical waves can reach the output port and turn it ON (i.e. logic 1). These procedures are shown in Fig. 5.

The time response diagrams of the proposed structure for both working states are shown in Fig. 6. When the optical intensity at I is about 0.2 W/μm², the amount of normalized optical intensity at the O is about 10%. On the other hand, when the optical intensity at I is about 1 W/μm², the amount of normalized optical intensity at O is about 100%. The rise and fall times for the proposed structure are 0.5 and 0.1 ps, respectively.

4. Conclusion

A novel structure was proposed for implementing an all optical binary ASK demodulator using a PhCs-based nonlinear ring resonator. The proposed structure works based on controlling the optical behavior of the resonant ring using optical intensity. When the optical intensity is about 0.2 W/μm², the demodulator generates binary 0 at the output port, however when the input optical intensity is about 1 W/μm², the demodulator generates binary 1 at the output port. The rise and fall times for the proposed structure are 0.5 and 0.1 ps, respectively.

References

All optical binary ASK demodulator...

[31] RAHMANI A., MEHDIZADEH F., Application of nonlinear PhCRRs in realizing all optical half-adder, Optical and Quantum Electronics 50, 2018, article 30, DOI: 10.1007/s11082-017-1301-3.

[33] JIANG Y.-C., LIU S.-B., ZHANG H.-F., KONG X.-K., Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals, Optics Communications 348, 2015, pp. 90–94, DOI: 10.1016/j.optcom.2015.03.011.

[34] JAE HUN KIM, YOUNG TAE BYUN, YOUNG MIN JHON, SEOK LEE, DEOK HA WOO, SUN HO KIM, All-optical half adder using semiconductor optical amplifier based devices, Optics Communications 218(4–6), 2003, pp. 345–349, DOI: 10.1016/S0030-4018(03)01203-3.

Received November 26, 2018
in revised form February 9, 2019