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Fast phase reconstruction
in off-axis digital holography
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A fast phase reconstruction method (FPRM) employing a free-sample hologram can improve the
efficiency of phase reconstruction in off-axis digital holography. However, the space-bandwidth
product is still confined by spectrum aliasing in the hologram owing to the zero-order term. In this
paper, we propose an FPRM that features an efficient zero-order term suppression method called
the average gray that can eliminate spectrum shifting. We can implement phase reconstruction by
considering both speed and the space-bandwidth product. We verified the validity of our approach
for off-axis digital holography using laser and white-light illumination.
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1. Introduction

Off-axis digital holography (DH) has garnered a great deal of interest from the scien-
tific community over the past decade because it can provide a quantitative phase
imaging in one shot, thus allowing for acquisition at the camera’s frame rate [1-5]. In
off-axis DH, the Fourier transform method is usually employed to implement phase
reconstruction because the zero-order and conjugate-order (+1st and —1st diffraction
orders) terms generated by the recorded hologram can be separated in the spectral do-
main. However, the computational process, especially such as phase unwrapping for
the reconstruction, is time consuming, and thus is often carried out offline. To address
this limitation, POPESCU et al. [6] proposed a fast phase reconstruction method (FPRM)
by dividing complex matrices with sample and free-sample following Fourier opera-
tions, and this can help avoid phase unwrapping when imaging thin samples smaller
than 27 radians. However, this method still requires spectrum shifting to relieve the car-
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rier, which limits the speedup. To improve the speed of reconstruction, SHAKED ef al. [7]
proposed an improved FPRM by employing critical sampling. However, its accuracy
thus also decreased due to the sampling. Bal et al. [8] developed a modified FPRM by
encoding the holograms of a sample and free-sample into a synthetic hologram that
avoids spectrum shifting. However, limited by the pixel size and number of cameras,
the spectrum of the conjugate orders can cause spectrum aliasing with that of the zero
order, which reduces the quality of the reconstructed image of the FPRM. Aliasing can
be avoided by using a large carrier frequency but this reduces the space-bandwidth prod-
uct. To eliminate the zero-order term and improve the space-bandwidth product (SBP),
slightly off-axis geometries [9—11] were employed. However, due to the need for phase
shifting, the setup becomes more complex as a consequence, and either its rate of ac-
quisition or utilization of the field-of-view of the camera decreases. Several digital ap-
proaches have been proposed to suppress the zero-order term [ 12—17], such as nonlinear
filtering and the iterative approach. However, most such approaches are time consuming.

In this study, we developed a new FPRM (nFPRM) by combining a simple and fast
zero-order term suppression method, the average gray. Through the average gray we
could suppress the zero-order term and retrieved the unaltered SBP in Ref. [6] to some
extent. Moreover, we need not operate spectrum shifting. We also performed experi-
ments to verify the efficiency of our proposed approach.

2. Phase reconstruction

In off-axis DH, the intensity distribution of the hologram acquired by the camera can
be expressed as

I(x,y) = d(x,y) + O.Sm(x,y)exp{i[anxx +2nf,y+o(xy)+ gob(x,y)}}

+0.5m(x, y) exp{—i[anxx + 27tfyy T o(x,y) T op(x, y)}}

(M
where d(x, y) and m(x, y) denote the zero-order term and the modulated term of the
hologram, respectively. They can be regarded as the invariable parameters during
the measurement of a pure phase sample, £, and f, denote the carrier frequencies in
the x and y directions, respectively, ¢(x, ) denotes the phase of the measured sample,
and ¢ (x, y) denotes the unexpected phase introduced by aberration and noise in the
system.

Because the hologram is a gray image, its zero-order term d(x, y) can be then ap-
proximated to the average gray level of the image in the spatial domain, which has no
effect on the measured phase. The zero-order term can thus be filtered out using the
grayscale average method for images [18, 19] that the image is first divided into many
local regions and then the average gray value is calculated for each local region, and
the result can be expressed as
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lp(x,y) = 0.5m(x, y)eXp{i[%fxx 20,y + () gy, y)}}

+ 0.5m(x, y) exp{i[anxx t2nf,y + o(x, y) + gy (x, y)}} 2)

Having applied the Fourier transform (FT) operation to Eq. (2), we can divide the
conjugate-orders terms in the spectral domain and choose the expected first-order term
through a band-pass filter (BPF). In Ref. [6], the first-order term needs to be shifted
back to the center to eliminate carrier frequencies, but this operation is not necessary.
After filtering, we can directly operate the inverse Fourier transform (IFT) and obtain
the result as

r(x,y) = IFT{FT{l;} - BPF}

= 0.5m(x,y) exp{i[%tfxx + 2nfyy +o(x,y) + op(x, y)}} 3)

When there is no phase sample in the input plane, we repeat the above-mentioned
processes and obtain

r,(x,y) = 0.5m(x,y) exp{i[anxx +2nf,y + op(x, y)}} 4)

where ¢y, includes the background phase and phase aberration. Note that we can re-
move m, ¢y, f, and f, through a division between Egs. (3) and (4) to yield a complex
function containing only sample information. By performing an arc tangent operation,
we can obtain the thin sample phase distribution with the term

r(x, ) (5)

¢(x,y) = atan
(X, )

Similar to Ref. [6], our approach can implement thin phase reconstruction with only
one arc tangent operation. But our approach abandons spectrum shifting and, in par-
ticular, suppresses the zero-order term to yield in an improvement in the SBP [11].
Compared with Refs. [12—16], the suppression does not occur in the spectral domain
but in the spatial domain, which can also lead to a higher utilization of the expected
first-order term.

3. Experimental results

To demonstrate the feasibility of nFPRM, we first imaged a phase plate by using off-axis
DH microscopy using a reflective point diffraction interferometer [20]. In the experi-
ments, we used an He-Ne laser with 4 = 632.8 nm as a light source and a CCD camera
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Fig. 1. Experimental results on a phase plate. Hologram (a). Spatial power spectrum obtained by FPRM (b)
and nFPRM (c¢). Phases reconstructed by FPRM (d) and nFPRM (e); the color bar representing units in
radians.

with a resolution of 1600 x 1200 pixels as a recorder, where each pixel had an area of
4.4 x 4.4 um. Figure 1a shows the phase plate hologram acquired. The refractive index
of the phase plate was 1.5168 and its step height was 580.22 nm as measured by
a BRUKER atomic force microscope. This provided an optical path difference of
2.98 rad at 1 = 632.8 nm. Using the Fourier transform, we obtained its spatial power
spectrum as shown in Fig. 1b. The zero-order term clearly overlapped with the conju-
gate-order terms in the figure, which caused aliasing. By applying the grayscale aver-
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Fig. 2. Comparison profiles along the dashed lines indicated in Figs. 1d and le.
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age method to the image, we obtained its new spatial power spectrum as shown in
Fig. 1c. Note that we suppressed the zero-order term even though there was a small
amount of residual zero-order information in the center, and then enlarged the chosen
coverage of the first order. Figure 1d shows the result reconstructed by the FPRM,
Fig. le illustrates the result obtained by the nFPRM, and Fig. 2 shows the comparison
profiles along the dashed lines indicated in Figs. 1d and le. These results revealed that
the FPRM suffered from aliasing artifacts while the nFPRM was free of them, especially
at the edge of the step. We also carried out a comparison in MATLAB between FPRM
and nFPRM using the hologram shown in Fig. 1a with 512 x 512 pixels. The results
illustrated that FPRM operated at 30 ms while the nFPRM operated at 39.9 ms. Our
approach also achieved real-time imaging. Like the FPRM, our approach only required
a highly parallelizable operation such as the Fourier transform and matrix multiplica-
tion. Therefore, a much higher retrieval speed could be allowed by using a GPU.

The quality of the retrieved image is confined by the size of the digital filter (DF)
employed in the spectral domain. The maximum allowable size of the DF is determined
by the distance between the first- and zero-order terms. Without loss of generality, we
define F = 1 as half the length of the square side as shown in Fig. 1¢ that touches the
zero-frequency point [11]. Figure 3 shows the comparison between the performance
of FPRM and nFPRM at different values (0.3, 0.5, and 0.7) of F,. We see that the
nFPRM allowed us to use a DF with a much larger F,, which resulted in improved
retrieval performance.
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Fig. 3. Phase distributions of a phase plate obtained by FPRM and nFPRM, with the color bar representing
units in radians.
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Fig. 4. Phase distributions of an unlabeled prostate tissue obtained by FPRM and nFPRM, with the color
bar representing units in radians.

To further verify the effectiveness of the nFPRM, we imaged an unlabeled prostate
tissue by using white-light diffraction phase microscopy (WDPM). InwDPM [11, 21, 22],
we employed a halogen lamp commonly used in commercial microscopes as spatially
coherent white light illumination and a CCD camera (Hamamatsu ORCA Flash) as
a recorder. In order to ensure the field to be spatially coherent over the entire field of
view, we need to close the condenser aperture to the value (NA = 0.09). The diffraction
grating used in the wDPM was at a period of 33.33 lines/mm. Figure 4 shows the com-
parison between FPRM and nFPRM. Again, the nFPRM yielded higher retrieval ca-
pability, and the aliasing artifact was noticeable for the FPRM as a result of frequency
overlap in the spectral domain.

4, Conclusion

In this paper, we proposed and verified an nFPRM for off-axis DH by combining the
average gray. The zero-order term was suppressed by the average gray, and the phase
was reconstructed using a free-sample hologram. Consequently, the nFPRM quickly
reconstructed the phase without spectrum shifting. Moreover, the nFPRM yielded near-
ly the same speed as the FPRM with better reconstruction capability. Experimental
results on an off-axis DH using laser and white light illumination showed the perfor-
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mance of our approach. Higher speeds could be achieved by performing all operations
on a GPU. We think our approach is practical for real-time off-axis DH.
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