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An image encryption scheme based on a Gaussian apertured reality-preserving fractional Mellin
transform (GARPFrMT) is proposed. The GARPFrMT was realized in the diffraction domain.
The Gaussian aperture, like a soft aperture, improved the amount of light that passed through the
lens compared to a hard aperture and reduced the light leakage at the edge of the lens, assisting to
some extent in resisting direct attacks. In the proposed scheme, the reality-preserving transform
was constructed in the diffraction domain to ensure that the cipher-text is real. The GARPFrMT
is a nonlinear transformation used for eliminating potential insecurity existing in the linear image
encryption system. In order to further enhance the security of the encryption system, an Arnold
transform, and a bitwise XOR operation were employed for permutation and scrambling in the en-
cryption process. Simulation results and theoretical analysis show that the proposed algorithm is
feasible and capable of withstanding several common attacks.

Keywords: image encryption, Gaussian apertured reality-preserving FrMT, Collins diffraction, Arnold
transform, bitwise XOR.

1. Introduction

With the development of modern information technology, information dissemination
systems play a very vital role in people’s daily lives. However, although people enjoy
the convenience brought by the development of information technology, the issue of
information security has become increasingly prominent. Besides, there is a growing
concern about image encryption in the field of information security.

REFREGIER and JAVIDI [1], in 1995, first proposed a double random-phase encoding
(DRPE) algorithm in the Fourier domain for optical image encryption. Based on the
DRPE algorithm, optical image encryption technology has attracted a lot of attention,
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and many relevant researches have been published [2–5]. LOHMANN pointed out that
the fractional Fourier transform (FrFT) could be implemented with an optical system
by changing the position of the lens [6, 7]. UNNIKRISHNAN and SINGH [5] applied the
DRPE algorithm to the optical system of FrFT with the position of the lens and the
incidence wavelength as the cipher keys, which enlarges the key space. Since then, sev-
eral optical image encryption algorithms based on FrFT have been proposed [7–9].
HENNELLY and SHERIDAN also indicated that FrFT is a linear transformation, which ro-
tates the signal through any arbitrary angle into a mixed frequency-space domain [9].
However, to some extent, the linear FrFT-based encryption system has some potential
security risks [10, 11]. To avoid the disadvantages stemming from the linearity of clas-
sical DRPE, WANG and ZHAO [12] proposed an encryption algorithm based on nonlinear
amplitude-truncation and phase-truncation in the Fourier domain. JOSHI et al. [13] pro-
posed a nonlinear image encryption scheme for color images, using natural logarithms
and FrFT, which showed better anti-attack performance than linear image encryption
methods.

ZHOU et al. [14–17] proposed a series of nonlinear image encryption algorithms
based on fractional Mellin transform (FrMT). FrMT itself is a nonlinear transform that
makes the nonlinearity of the encryption system convenient and useful. FrMT can be
realized by the fractional Fourier transform by changing the coordinates from the rec-
tangular Cartesian coordinates to the polar coordinates, as described in [14]. An opto-
electronic hybrid structure for FrMT has also been proposed in [14]. Because of those
proposed nonlinear encryption systems, high robustness and sensitivity to the cipher
keys are achieved. To simplify encryption process and enhance the sensitivity for frac-
tional orders of FrMT, ZHOU et al. [15] proposed an improved encryption algorithm
based on a multi-order discrete fractional Mellin transform. However, the aforemen-
tioned encryption algorithms based on FrMT [14–16] finally obtained complex-valued
cipher-text. In general, complex-values have some inconvenience in display, transmis-
sion and storage. Consequently, ZHOU et al. [17] proposed an image encryption algorithm
based on a reality-preserving fractional Mellin transform (RPFrMT), whose cipher-text
is real-valued data.

Generally, there are no apertures in optical image encryption systems. However,
in practice, apertures always exist in most optical systems, such as the finite size of
lens [18]. The implementation of the aperture can facilitate the reduction and control
of light leakage in optical systems. Therefore, it is necessary and practical to analyze
the performance of optical encryption systems with aperture.

This paper proposes an image encryption scheme based on a Gaussian apertured
reality-preserving FrMT. The apertured FrMT is realized through the log-polar trans-
form and apertured FrFT [19, 20]. Since the lens with Gaussian apertures is variable
and non-uniform, such as a soft aperture edge diaphragm, the intensity distributions
of the output laser are improved, which facilitates the resistance to possible attacks for
obtaining some useful information from the marginal leakage of light in the optical en-
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cryption systems. Thus, the Gaussian aperture is chosen to construct the apertured FrMT.
Within the framework of paraxial approximation, the apertured FrFT can be implemented
using the Collins diffraction integral formula. To obtain the real-valued encrypted data,
the nonlinear Gaussian apertured reality-preserving FrMT (GARPFrMT) is constructed.
The encryption process is mainly divided into three steps, namely a GARPFrMT trans-
form, an Arnold permutation, and a bitwise XOR operation.

The rest of this paper is arranged as follows. In Section 2, the related background is
reviewed, including the principles of apertured FrFT in an optical system. In Section 3,
the encryption procedures based on GARPFrMT are presented in detail. In Section 4,
simulations and analysis are given. Finally, conclusions are drawn in Section 5.

2. Background

2.1. Gaussian apertured FrFT optical system

FrFT can be performed in the diffraction domain in an optical system, as shown in
Fig. 1. The lens is a Gaussian lens, f  is the focal length with respect to the standard
focal length fs, and d = fs tan(φ/2) is the transmission distance, where φ = p × π/2, p is
the fractional order of the FrFT. 

Within the framework of the paraxial approximation, the field of light propagation
across the optical system as shown in Fig. 1 is divided into two ABCD optical systems
in accordance with the Collins diffraction integral formula [18]. {A1, B1, C1, D1} and
{A2, B2, C2, D2} are respectively the elements of the transfer matrices of the two sections:

(1)

(2)
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f = fs /sinφ

d d

Fig. 1. An optical system for the Gaussian apertured FrFT.
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For the optical field E(x1, y1) at P2, the following integral equation from P1 to P2
can be computed as:

(3)

where FC is the two-dimensional Collins diffraction transform with the incidence wave-
length λ and f (x, y) is the optical field at P1.

For the optical field E(x2, y2) at P3, the integral equation from the lens plane P2 to
the output plane P3 is:

(4)

where K(x1, y1) represents the Gaussian aperture shown in Fig. 2, which can be rewrit-
ten as:

(5)

Then, the Gaussian apertured FrFT can be implemented through formulas (1)–(5)
by changing the distance d and focal length of the lens fs.
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Fig. 2. Normalized intensity distributions of the Gaussian function for different standard deviations:
σ = 1000 (a), σ = 500 (b), σ = 200 (c), and σ = 50 (d).
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2.2. Chaotic system 

The logistic map is a simple dynamic equation used to generate a numerical sequence
with a complex behavior, which is defined as [21, 22]:

(6)

where the iterative value zl belongs to (0, 1), μ is a system parameter. The logistic map
is a chaotic system when μ is within [3.57, 4].

2.3. Arnold transform

Arnold transform is a widely used scrambling transformation in image encryption sys-
tems and its general form is [23, 24]:

(7)

where [x, y]T and [x', y' ]T are positions of an N-order matrix element before and after
the Arnold transform, respectively, the operator “mod” represents the modulo opera-
tion. When a = 1, and b = 1, the transform is the common Arnold transform. The inverse
Arnold transform is given as follows:

(8)

2.4. Reality preserving fractional transforms

VENTURINI and DUHAMEL [25] proposed a methodology to obtain reality-preserving forms
of fractional transforms. Based on this methodology, ZHOU et al. [17] gave a reality-pre-
serving fractional Mellin transform. The reality-preserving fractional transform is re-
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Fig. 2. Continued.
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viewed briefly. If x = {x1, x2, ..., xN}T is a real one-dimensional signal, then the signal
is constructed into a complex vector  with length N/2, and N, which is even:

(9)

where i is the imaginary unit. Then, the following calculation is performed:

(10)

where Re(∙) and Im(∙) represent the real part and the imaginary part, respectively, Mp is
the complex-valued discrete-fractional Mellin transform matrix with order p, size
(N /2) × (N /2) [26]. The reality-preserving result of FrMT can be obtained: 

(11)

3. Image encryption and decryption based on 
a Gaussian apertured reality-preserving FrMT

3.1. Gaussian apertured fractional Mellin transform

The Gaussian apertured fractional Mellin transform (GAFrMT) is a kind of the gen-
eralized nonlinear Mellin transform. Its nonlinearity ensures that the image encryption
scheme is nonlinear and is capable of resisting a known-plaintext attack and chosen
-plaintext attack. The Gaussian fractional Mellin transform is defined as follows:

(12)

where K(x, y) is the Gaussian aperture, φ1 = p1π/2, φ2 = p2π/2, p1, and p2 are the frac-
tional orders of the Gaussian apertured FrMT and C is a constant.

The Gaussian apertured FrMT can be obtained from the fractional Fourier transform
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transform is that the Gaussian apertured FrMT can be represented by the log-polar trans-
form and the Gaussian apertured FrFT, i.e.,

(13)

where the operators  and  represent Gaussian apertured FrMT
and Gaussian apertured FrFT having the same order ( p1, p2), respectively. Figure 3
shows an optoelectronic hybrid setup to transform coordinates from (x, y) to (ρ, θ ) and
to implement the Gaussian apertured FrFT.

The realization of FrMT has already been given in details by ZHOU et al. [14]. Many
parameters must be set in advance, including the geometric center of the original image
(denoted as (cx, cy)), the outer radii of the annular domain (denoted as rmax), and 

(14)

In addition, the number of discrete sampling points along the distance axis and along
the angle axis (denoted as nr, nw). The GAFrMT-related parameters also should be set
in advance, i.e., the incidence wavelength λ, the standard focal length fs, and the order p.

3.2. Gaussian apertured reality-preserving fractional Mellin transform

This paper proposes a reality-preserving transform suitable for Gaussian apertured
FrMT in the diffraction domain. The details of the reality-preserving transform are as
follows.

If A is a real square matrix with size N × N, then it is used to construct a complex
matrix B with size N × N/2:

(15)

where  and  

M G
p1 p2 

u v  FG
p1 p2 

f ρ θ  
 =

M G
p1 p2 

ꞏ  F G
p1 p2 

ꞏ 

f(x, y)
Computer

f(ρ, θ)

Coherent

SLM Lens

Reference

CCD

light
beams

Fig. 3. Optoelectronic hybrid setup for apertured FrMT.
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Then the  can be obtained: 

(16)

where MG, p is the Gaussian apertured fractional Mellin transform with order p in the
diffraction domain with size N × N/2.

Finally, the reality-preserving result Y with size N × N is obtained:

(17)

3.3. Proposed image encryption and decryption scheme

The schematic of the proposed image encryption and decryption algorithm is shown
in Fig. 4, and the encryption process is described as follows.

Step 1. Since the GARPFrMT is realized by the log-polar and the Gaussian aper-
tured reality-preserving fractional Fourier transforms, the original image f (x, y) is first
log-polar transformed into f (ρ, θ ) of size nr × nw from Cartesian coordinates (x, y) to
polar coordinates (ρ, θ ), as described in detail in [14].

Step 2. Then, f (ρ, θ) is regarded as the input of the Gaussian apertured reality-pre-
serving FrFT with order p and parameter θ. Finally, the output F(u, v) of the GARPFrMT
can be obtained. The order p and incidence wavelength λ are regarded as cipher keys.

Step 3. The output F(u, v) of the GARPFrMT is further permuted by the Arnold
transform to generate a new encryption image named by Y (u, v).

Step 4. Logistic map with initial values μ and z0 is iterated to obtain a random se-
quence  where p = nr × nw. The sequence z' is used to perform
the bitwise XOR operation to diffuse the encrypted image Y(u, v) and finally obtain
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Fig. 4. Block diagram of the encryption and decryption process.
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the cipher-text C. The cipher key μ used in the logistic map is generated using the
SHA-256 algorithm, which is related to the output F(u, v) of the GARPFrMT [27, 28].
The values μ and z0 are used as cipher keys.

3.3.1. Decryption process

The decryption process is actually the inverse of the encryption shown in Fig. 4. First,
the inverse bitwise XOR operation with cipher keys μ and z0 is utilized to decrypt the
cipher-text C. Secondly, the inverse Arnold transform is employed to recover the image
F'(u, v). Finally, the decrypted image f ' (x, y) can be recovered by performing an inverse
GARPFrMT. 

4. Simulation results and security analysis

A series of experiments were implemented on a computer with 3.60 GHz, GPU i7-4790
and RAM 8.00 GB using Matlab 2016(b) to analyze the proposed encryption algorithm
based on GARPFrMT. The images of size 255 × 255 were considered as test plain im-
ages, since the GARPFrMT is good at processing images with odd lengths and widths. 

4.1. Parameters setup

The grayscale image of Elaine as shown in Fig. 5, were selected as test plain images.
The geometric center of the original image (cx, cy) is set as (128, 128), the outer radius
of the annular domain is rmax = 181. The rings and wedges were chosen as nr = 500,
and nw = 500. The GARPFrMT-related parameters are set as: λ = 632.8 nm, fs = 4 mm,

a b c dOriginal image Encrypted image σ = 1000 σ = 500

e f g hσ = 200 σ = 100 σ = 50 σ = 10

Fig. 5. Encrypted and decrypted results for different values σ : 1000, 500, 200, 100, 50 and 10; the original
image Elaine (a), the encrypted image (b), and decrypted Elaine (c–h).
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and the order p is set to 0.5. The initial value of the logistic map z0 is equal to 0.32,
and the parameter μ is obtained using the SHA-256 algorithm. 

4.2. Encryption results and decrypted images

The simulation-encrypted results corresponding to the original image Elaine is shown
in Fig. 5b, from which it can be seen that the cipher image is visually unrecognizable.
There is a group of correctly decrypted images (Figs. 5c–5h) with six decryption im-
ages corresponding to six different values σ : 1000, 500, 200, 100, 50 and 10. As shown
in Fig. 5, the decrypted images become blurred around the edges of the images as the
value σ  gradually decreases. 

4.3. Histogram analysis

The histogram describes the number of pixels in the image with different gray levels and
their frequency of occurrence. The histograms of cipher images should obey a fairly
uniform distribution. Figure 6a shows the histograms of plain images. Figures 6b–6d
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σ = 500 (c), and σ = 100 (d).
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shows the histograms of cipher images for different values σ, such as 1000, 500, and 100.
Obviously, the histograms of cipher images are nearly identical and almost uniformly
distributed. Thus, there are reasons to believe that histograms of cipher images are no
longer useful for attackers.

4.4. Correlation of adjacent pixels

As shown in Table 1, there exist strong neighborhood correlations between adjacent
pixels for the original images. However, to be secured and efficient, those neighbor-
hood correlations should not exist for encrypted images. Therefore, it is necessary to
perform a correlation analysis on adjacent image pixels in cipher and plain images.
The correlation coefficient between each pair is defined as

(18)

where  and  N1 denotes the number of adjacent

pixel pairs chosen in the horizontal, vertical, and diagonal directions. Table 1 shows
that the adjacent pixels of the original images have a very strong correlation, whereas
those in the ciphered images for different values σ are very weak. Therefore, the pro-
posed image encryption algorithm based on GARPFrMT is secured against correlation
analysis attack. 
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4.5. Key sensitivity and key space analyses

4.5.1. Key sensitivity

In the experiments, three different control parameters σ = 1000, 500, 100 of Gaussian
aperture were used to analyze the cipher key sensitivity. Figure 7 shows the decrypted
results of Elaine with incorrect keys. Figures 7a–7c illustrates the decrypted images
with an incorrect GAPRFrMT order p = 0.6. Figures 7d–7f presents the decrypted im-
ages with a wrong initial value for logistic map z0 + 10–15. The decrypted results with

Fig. 7. Decrypted Elaine using incorrect cipher keys with different values σ: 1000, 500, 100. Incorrect
GARPFrMT order of 0.6 (a–c), wrong initial value for logistic map  (d–f ), wrong pa-
rameter for logistic map parameter μ' = μ + 10–15 (g–i), wrong incidence wavelength λ' = λ + 10–7 ( j–l).
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a wrong parameter for logistic map μ + 10–15 are given in Figs. 7g–7i. The incorrect
incidence wavelength λ' = λ + 10–7 is used for the decryption process, the decrypted
images are shown in Figs. 7j–7l.

4.5.2. Key space analysis

To measure the similarity between the original image and the decrypted image, the mean
square error (MSE) and logarithm of mean square error (LMSE) are introduced to eval-
uate the quality of the decrypted images. MSE is defined as:

(19)

where f (i, j ) denotes the original image pixel, f '(i, j) is the pixel of the decrypted im-
age, M1 and M2 are the sizes of original and decrypted images, respectively.
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ALVAREZ and LI [29] indicated that the encryption scheme is secure when its cipher
key space is at least up to 2100. As can be seen from Figs. 7 and 8, the double-precision
of the parameters z0, μ of the logistic map is approximately 10–15, then the value of
those cipher key spaces is 1030. The cipher key space for the incidence wavelength λ
is 107. The period of the Arnold transform is 751 when the output size of GARPFrMT
is 500 × 500. Therefore, the total key space is at least 1039, which is greater than 2100.
This means that the key space is large enough to resist brute-force attacks.

In addition to a sufficiently large key space, the order p of GARPFrMT further ex-
pands the cipher key space.

4.6. Information entropy analysis

Information entropy is used to describe the randomness of image textures. The entropy H
is defined as

(20)

where P(xi) represents the probability of the occurrence of the pixels xi for an n-gray
level image. The results shown in Table 2 indicate that the entropies of the encrypted
images for different values σ are very close to 8 [30]. Therefore, the proposed scheme
has the ability to resist information entropy attacks. 

4.7. Differential attacks

The number of pixels change rate (NPCR) and the unified average changing intensity
(UACI) are two commonly used quantities to test the ability of an encryption algorithm
to resist differential attacks. The NPCR and UACI are represented as follows:

(21)

(22)

H P xi  log2P xi 
i 1=

n

=

T a b l e 2. Comparison of entropies of original and encrypted images for different values σ. 

Original images
Encryption image

σ = 1000 σ = 500 σ = 200 σ = 100 σ = 50

Elaine 7.5036 7.9993 7.9993 7.9992 7.9993 7.9993

Cameraman 7.0030 7.9992 7.9992 7.9993 7.9994 7.9993

Peppers 7.3656 7.9992 7.9993 7.9992 7.9994 7.9992

NPCR D i j  1
M1 M2

-------------------- 100%
j 1=

M2


i 1=

M1

=

UACI
C1 i j  C2 i j –

255
----------------------------------------------------

j 1=

M2


i 1=

M1


1

M1 M2

-------------------- 100%=
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(23)

where D (i, j ) is a bipolar; C1(i, j ) and C2(i, j) are pixel values of encrypted images of
size M1 × M2, whose original images have a 1-bit pixel difference. 

The experimental NPCR and UACI are shown in Tables 3 and 4, respectively, from
which it can be known that all the NPCRs and UACIs are very close to the expected
values of 99.6054% and 33.4635%, respectively [30]. The results indicate that the pro-
posed scheme is sensitive to plain-text changes.

4.8. Robustness analysis

Since the cipher images are easily affected by noise and data loss during transmission
and processing, it is necessary to measure the robustness of the proposed image en-
cryption algorithm, noting that noise attack and occlusion attack are two effective as-
sessment methods. Salt and pepper noise with different intensities is used to alter the
decrypted images generated at different values of σ. Figure 9 shows the decrypted im-

D i j 
0, C1 i j  C2 i j =

1, C1 i j  C2 i j 



=

T a b l e 3. NPCR (%) values of encrypted images for different values σ. 

Image σ = 1000 σ = 500 σ = 200 σ = 100 σ = 50

Elaine 99.6136 99.6396 99.6056 99.6192 99.6156

Cameraman 99.5832 99.5832 99.5816 99.5956 99.6112

Peppers 99.5952 99.6176 99.5912 99.6168 99.6272

T a b l e 4. UACI (%) values of encrypted images for different values σ.

Image σ = 1000 σ = 500 σ = 200 σ = 100 σ = 50

Elaine 33.5040 33.5050 33.5107 33.4867 33.5570

Cameraman 33.5654 33.5294 33.4850 33.5044 33.4988

Peppers 33.4638 33.4272 33.5354 33.5366 33.5836

a b c σ = 1000, k = 0.1

Fig. 9. Decrypted Cameraman with various intensities of salt and pepper noises. At different values σ,
decrypted images with k = 0.01 (a, d, g), decrypted images with k = 0.05 (b, e, h), and decrypted images
with k = 0.1 (c, f, i).

σ = 1000, k = 0.01 σ = 1000, k = 0.05
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ages of Cameraman when k is equal to 0.01, 0.05, and 0.1, respectively. It can be seen
that the major information of the original image is still visually perceptible even with
a certain amount of noise added to the encrypted images.

The robustness on resisting occlusion attack was analyzed with an occlusion ratio
of 1/16, 1/8, 1/4, as shown in Figs. 10a, 10e, and 10i, respectively. The corresponding

d e fσ = 500, k = 0.01 σ = 500, k = 0.05 σ = 500, k = 0.1

g h iσ = 100, k = 0.01 σ = 100, k = 0.05 σ = 100, k = 0.1

Fig. 9. Continued.

Fig. 10. Decrypted Cameraman with various occlusion ratios. Encrypted images with 1/16 (a), 1/8 (e),
and 1/4 (i) occlusion. At different values σ, decrypted images with 1/16 occlusion (b–d), decrypted images
with 1/8 occlusion (f–h), and decrypted images with 1/16 occlusion (j–l).

ba c d

fe g h
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decrypted results at different values σ are presented in Figs. 10b–10d, 10f–10h and
10j–10l, respectively. As shown in Fig. 10, it is observed that the decrypted images
remain visible, although the degree of data loss is different. It can be seen that the pro-
posed scheme has a certain degree of robustness against noise and occlusion attacks. 

5. Conclusion

An image encryption scheme based on the nonlinear Gaussian apertured reality-pre-
serving fractional Mellin transform is presented. The Gaussian aperture is variable and
non-uniform, and as a soft aperture edge diaphragm, the intensity distributions of the
output laser are improved. The reality-preserving transform in the diffraction domain
ensures that the cipher-text is real, which is convenient for display, transmission and
storage. The nonlinearity of GARPFrMT can reduce the potential insecurity in an image
encryption system caused by linear encryption algorithms. To further enhance the se-
curity of the encryption system, the Arnold transform and the bitwise XOR operation
are adopted to encrypt the output of GARPFrMT. The simulation results demonstrate
that the Gaussian aperture parameter σ influences the performance of the optical en-
cryption system. In addition, the encryption algorithm is sensitive enough to the cipher
keys, and the key space is large enough against brute-force attacks. Furthermore, the
simulation results have shown that the encryption system is capable of resisting dif-
ferent attacks, such as known-plaintext attack, chosen-plaintext attack, and statistical
analysis attacks. Besides its high security, the proposed scheme is robust with noise
and occlusion attacks.
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