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This paper designs a five-port transmission grating under normal incidence. Rigorous coupled-wave
approach is used to optimize the grating parameters. The energy of the grating is mainly dispersed
to the 0th, ±1st and ±2nd orders. The efficiency of each diffraction order under both polarizations
is close to 20%. The modal method is used to describe the propagation mechanism of the two
polarized lights in the grating, and the diffraction behavior of the grating is analyzed. In addition,
the grating has a wide range of incident characteristics and a large process tolerance. Therefore,
this five-port beam splitter with a connecting layer will be a good polarization-independent beam
splitting device.
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1. Introduction

Grating [1–6] is an important optical device. According to its basic characteristics of
polarization, phase, beam splitting and dispersion [7–10], the grating can realize cou-
pling, phase matching, splitting and filtering [11–14]. Moreover, based on integration
with other devices, a grating beam splitter, a filter, and a wavelength division multiplexer
can be fabricated [15–20]. Beam splitters have important application value in the field
of optical communication [21, 22]. With the continuous improvement of lithography
level, multi-channel grating beam splitters have been proposed. CAO et al. designed
an efficient single-port fused-silica grating [23]. FENG et al. first proposed a single-layer
dielectric three-port transmissive grating [24]. XIANG et al. proposed a five-port trans-
mission grating with single-groove structure under TE-polarized light [25]. Compared
with Ref. [25], our design not only improves the efficiency of TE polarization but also
calculates the beam splitting of the grating under TM polarization. 

The numerical methods for designing grating devices are mainly the rigorous cou-
pled-wave method [26], finite element method, time domain finite difference method
and modal method [27]. The method used in this design is a rigorous coupled-wave



610 C. GAO et al.
method and modal method. Unlike the rigorous coupled-wave approach, the electro-
magnetic field of the grating in the modal method is not a Fourier series expansion but
an eigenmode expansion. Combined with the periodic characteristics of the grating,
the modal method analyzes the modality of the grating to obtain the effective refractive
index of each mode in the grating region, and the energy coupling of the modal and
diffraction orders of the grating are investigated. In this design, we optimize the grating
parameters by the rigorous coupled-wave method to obtain the efficiency of each dif-
fraction order, and then use the modal method to explain the physical mechanism of
the grating diffraction process.

In this paper, a single-layer five-port transmission grating with a connecting layer
under normal incidence is reported and designed. With a duty cycle of f  = 0.4 and a pe-
riod of d = 2313 nm, the rigorous coupled-wave approach is used to optimize the param-
eters of the grating. The modal distribution of the grating is analyzed, and the overlap
integral of the grating is calculated to explain the diffraction process of the grating.
Compared with the single-groove five-port grating, we not only consider the case of
TM polarization but also analyze the incident characteristics and process tolerance of
the grating.

2. Numerical design and physical explanation 
of five-port beam splitters

Figure 1 is a structural diagram of a five-port transmission grating with a connecting
layer, where h1 represents the thickness of the grating ridge, h2 represents the depth of
the connecting layer, and d represents the period of the grating. The grating groove is
air, whose refractive index is n1 = 1.00. The grating ridge and the connecting layer are
composed of fused silica, and the refractive index is n2 = 1.45. The substrate of the
grating is Ta2O5, and the refractive index is n3 = 2.00. Light with an incident wave-
length of λ = 800 nm is incident perpendicularly to the upper surface of the grating.
The incident light passes through the grating layer, and the energy of the incident light
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Fig. 1. The schematic diagram of the five-port grating at wavelength of 800 nm with duty cycle of 0.4
under normal incidence θ = 0.
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is diffracted to the 0th, ±1st and ±2nd orders. Due to the periodic structure of the grat-
ing, the efficiency of the +1st and –1st orders is equal, the efficiency of the –2nd and
+2nd orders is equal, so we only consider the transmission efficiency of the 0th, –1st
and –2nd orders in the following calculations.

Figure 2 shows the transmission efficiency of a five-port grating under normal in-
cidence θ = 0 versus the grating groove depth and the thickness of the connecting layer.
The abscissa is the groove depth of the grating h1 and the ordinate is the thickness of
the grating connecting layer h2. It is the contour map, where horizontal and longitudinal
coordinates are two thicknesses, and each line in Figs. 2a–2f represents the contour of
efficiency. As can be seen from Fig. 2, for TE-polarized light, at h1 = 1.35 μm and
h2 = 0.44 μm, the efficiency of 0th, –1st, and –2nd orders is 19.97%, 18.83% and
18.83%, respectively. The total efficiency of the five orders is 95.29%. For the TM-po-
larized light, when h1 = 1.39 μm and h2 = 1.00 μm, the efficiency of the 0th, –1st and
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Fig. 2. Efficiencies in different orders for the grating versus the grating groove depth and the thickness
of  the connecting layer for both two polarizations at wavelength of  800 nm under normal incidence:
the 0th order for TE polarization (a), the –1st order for TE polarization (b), the –2nd order for TE polar-
ization (c), the 0th order for TM polarization (d), the –1st order for TM polarization (e), the –2nd order
for TM polarization (f ). It is the contour map, where horizontal and longitudinal coordinates are two thick-
nesses, and each line in Figs. 2a–2f represents the contour of efficiency. 
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–2nd orders is 18.99%, 18.85% and 19.12%, respectively. The efficiency of the five
orders is 94.93%. The grating structure has better uniformity under TM polarization.
Table 1 shows the efficiency and uniformity of the five orders of the grating under two
polarizations.

According to the parameters obtained, we use the modal method to explain the
physical mechanism of grating diffraction. Figure 3 shows a normalized field diagram
of the field distribution of a five-port transmission grating. The 800 nm of incident light
is incident perpendicularly from the surface of the grating, and one can see the energy
distribution transmitted by the grating from the bottom. Modal method can be used to
explain the diffraction mechanism of the grating. For a single-layer five-port transmis-
sion grating, a total of two couplings occur during the diffraction process. The first
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Fig. 2. Continued.

T a b l e 1. The actual grating profile parameters with the duty cycle of 0.4 under normal incidence.

Polarization h1 [μm] h2 [μm] ±2nd ±1st 0th Total Uniformity

TE 1.35 0.44 18.83% 18.83% 19.97% 95.29% 2.93%

TM 1.39 1.00 19.12% 18.85% 18.99% 94.93% 0.71%
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Fig. 3. Normalized field magnitude distribution with five-port beam splitter under normal incidence: TE (a),
and TM (b) polarizations.
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coupling is the coupling of incident light and grating mode. When the incident light
enters the grating region, a first coupling occurs, which triggers the multi-port grating
mode. The grating mode propagates through different effective refractive indices neff
to the exit surface, producing a second coupling. Table 2 shows the effective refractive
indices of multiple modes of the grating under two polarizations, which can be obtained
by Eqs. (1) to (3) below. The second coupling is the coupling between the grating mode
and the diffraction order, wherein the energy exchange in the coupling process can be
represented by the overlap integral obtained by Eqs. (4) and (5). Table 3 shows the
energy exchange capability under two polarizations.

Grating dispersion equations [28] are: for TE polarization

(1)

T a b l e 2. Effective refractive index of grating for two polarizations.

TE TM

Mode 0 1.40927 1.39882

Mode 1 1.28426 1.24545

Mode 2 1.07756 1.04289

Mode 3 0.94224 0.92478

Mode 4 0.88440 0.90722

Mode 5 0.56625 0.55884

T a b l e 3. Coupling overlap integration between six grating modes and five diffraction orders of an op-
timized grating parameter at an incident wavelength of 800 nm.

Mode orders
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Modes 0 0.03171 0.23971 0.45562 0.23971 0.03171

Modes 1 0.20341 0.26176 0 0.26176 0.20341

Modes 2 0.21771 0.02963 0.24289 0.02963 0.21771

Modes 3 0.09172 0.22672 0.28391 0.22672 0.09172

Modes 4 0.20799 0.23082 0 0.23082 0.20799

Modes 5 0.08583 0.00266 0 0.00266 0.08583

T
M
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iz
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n

Modes 0 0.05147 0.24258 0.40590 0.24258 0.05147

Modes 1 0.21247 0.22143 0 0.22143 0.21247

Modes 2 0.17692 0.04303 0.32166 0.04303 0.17692

Modes 3 0.18230 0.16310 0.09692 0.16310 0.18230

Modes 4 0.19742 0.18574 0 0.18574 0.19742

Modes 5 0.06022 0.00075 0.00098 0.00075 0.06022

k1 1 f– dTE k2 f dTE coscos
k1

2 k2
2+

2k1k2

--------------------- k1 1 f– dTEsin k2 f dTE sin–

α dTE cos=
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and for TM polarization

(2)

where

(3a)

(3b)

(3c)

(3d)

For TE polarization, the coupling between the exit diffraction order and multiple
modes is written as

(4)

where um (x) is the grating mode, and Eym(x) is the diffraction order of the incident elec-
tric field. And for TM polarization, the coupling process is written as

(5)

where uq stands for grating mode, and Hyw(x) is the diffraction order. The left operator
 in Eqs. (4) and (5) represents the coupling process between the diffraction order of

the grating device and the modes in the grating region. The energy exchange can be
described by the overlapping integral on the right side of the formulas, which can ex-
plain the physical mechanism of the diffraction process of the grating.

3. Analysis and discussions

In the process of optimizing the parameters, the incident wave always is incident per-
pendicularly. In the actual process, the five-port grating beam splitter has a larger incident
angle bandwidth and incident wavelength bandwidth. Therefore, we study the incident
angle and incident wavelength of the grating. Figure 4 shows the transmission efficiency
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of five orders versus the incident wavelength. The abscissa indicates the incident wave-
length of the grating and the ordinate indicates the diffraction efficiency of the grating.
For TE-polarized light, each efficiency of the five orders is greater than 16% when the
wavelength range of the grating is 770–817 nm, where the bandwidth is 47 nm. For
TM-polarized light, when the wavelength of the grating is 771–820 nm and the band-
width is 49 nm, the respective order of the grating is more than 16%. The grating has
a large incident bandwidth under TM polarization. Figure 5 shows the relationship be-
tween the incident angle and the grating efficiency. For TE-polarized light, efficiencies
of five diffraction orders are greater than 16% at incident angles ranging from –3.03°
to 4.54°. For TM-polarized light, the five diffraction orders of the grating are greater
than 16% at incident angles ranging from –6.60° to 2.15°. One can see that the TM-po-
larized grating has a good incident angle bandwidth.

During the actual etching process, the period and duty cycle of the grating may be
affected due to some factors in the fabrication process. Therefore, it is necessary to study
the manufacturing tolerance of the period and duty cycle of the grating. Figure 6 shows
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Fig. 4. The efficiency corresponding to the incident wavelength with duty cycle of 0.4 under normal in-
cidence: TE (a), and TM (b) polarizations.
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the relationship between the period of the grating and the efficiency of the five orders of
the grating. For TE-polarized light, the grating period is in the range of 2168–2487 nm,
and the efficiency of the five orders is greater than 16%. For TM-polarized light, the
grating period is in the range of 2207–2442 nm, and the efficiency of the five orders
is greater than 16%. Figure 7 shows the relationship between the duty cycle of the grat-
ing and the efficiency. Under TE polarization, the duty cycle of the grating is from 0.36
to 0.47, when the efficiency of the five orders is greater than 16%. Under TM polari-
zation, the efficiency of the five orders is greater than 16% when the duty cycle of the
grating is between 0.38 and 0.53.

4. Conclusions

A new single-layer transmissive five-port grating with a connecting layer is designed.
The grating beam splitter achieves a better five-port beam splitting effect by adding
a connecting layer. We use the rigorous coupled-wave approach to optimize the struc-
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Fig. 6. The diffraction efficiency corresponding to the period: TE (a), and TM (b) polarizations.
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tural parameters of the grating to obtain a good beam splitting effect. Then the modal
method is used to calculate the effective refractive index and energy coupling exchange
of the excited mode. Based on the optimized parameters, the incident characteristics
and process tolerance of the grating are analyzed. The structure shows that the grating
has a wide incident bandwidth characteristic under TM polarization and a large period
tolerance under TE polarization.
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