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Phase retrieval and phase unwrapping are the two important problems for enabling quantitative
phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two
problems, a deep-learning phase-shifting digital holography method is proposed in this paper.
The proposed method can establish the continuous mapping function of the interferogram to the
ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep
convolutional neural network, this method can retrieve the phase from one-frame blindly phase
-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed
method are verified by the simulation experiments of the microsphere and white blood cells, re-
spectively. This method will pave the way to the quantitative phase imaging of biological cells with
complex substructures.
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1. Introduction

Phase-shifting digital holography (PSDH) [1–4] has been widely used in many fields of
engineering and biology owing to the advantages of its label-free, non-contact, high
sensitivity and high resolution. In PSDH, phase retrieval and phase unwrapping are the
two equally important issues for realizing quantitative phase imaging (QPI) of cells [5]. 

Traditionally, the problem of phase extraction is solved by using various phase
demodulation methods, such as the two-step Gram–Schmidt orthonormalization
method [6], four-step phase-shifting (FSPS) algorithm [7], advanced iterative algo-
rithm (AIA) [8] and so on. Though these algorithms are satisfactory methods for phase
retrieval, the prior knowledge of phase-shifting interferogams is emphasized and then
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suitable algorithms aimed to different imaging objects are presented, leading to these
algorithms without universality. In addition, the retrieved phase value using the arc-
tangent function is often wrapped in the limited range of (–π, π) [9] because an optical
path difference is greater than the probe wavelength, resulting in the phase ambiguity.
To address this issue, different types of phase unwrapping algorithms are proposed
to obtain the true phase. However, the phase unwrapping procedure is often complex
and time-consuming, and it cannot work well when the object is high-aspect-ratio sam-
ple [10,11]. Another crucial method for addressing the problem of wrapped phase is
the dual-wavelength PSDH technique [2,12–14]. Using this method, the unwrapped
phase at the longer synthetic wavelength can be obtained by subtraction operation be-
tween two wrapped phases of single wavelength, expanding the measured range of the
imaging object; the phase at the shorter synthetic wavelength can be achieved by ad-
dition operation between the wrapped phases at each wavelength, improving the ac-
curacy of phase imaging. However, dual-wavelength PSDH requires the dual-phase
demodulation and increases the complexity of recording and coping with phase-shift-
ing interferograms, compared with single-wavelength PSDH.

More recently, deep learning (DL) has attracted researcher’s attention due to the
fact that deep convolutional neural network (DCNN) has the capability of establishing
the end-to-end mapping relation in the pixel-level. If there are sufficient number of
neural network fitting parameters in the DCNN, DL can theoretically approximate any
continuous functions [15]. With the increasing of computing power, DL has emerged
as a rapidly developing technique [16] and has been shown to be useful in optical image
reconstruction and digital holography, such as the phase aberration automatic compen-
sation [17], autofocusing holographic imaging [18], particle volume reconstruction [19],
fast off-axis holographic phase retrieval [20], phase recovery and image reconstruc-
tion [21], in-line digital holographic reconstruction [22], phase unwrapping [23], dual
-wavelength interferogram decoupling [24], and interferogram denoising [25]. Though
trained DCNN-based methods can obtain the state-of-the-art performance of phase im-
age reconstruction and digital holographic imaging, they either require big datasets or
indirectly obtain the phase information.

Here, in this paper, to simultaneously address the two problems of phase retrieval
and phase unwrapping, we propose a new deep-learning phase-shifting digital holog-
raphy (DLPSDH) method based on a DCNN, to establish the continuous mapping
function relation of the interferogram to the phase. The proposed method trained in
an end-to-end fashion on the minimum number of datasets, only requires one-frame
randomly phase-shifted interferogram as input, and then directly outputs the phase in-
formation, without phase unwrapping. This method has better phase retrieval accuracy,
compared with other traditional phase demodulation methods. The algorithm descrip-
tion of the DLPSDH method is introduced, and then its feasibility and applicability
are demonstrated by the simulation experiments of the microsphere and white blood
cells (WBCs), respectively. 
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2. Algorithm descriptions 

2.1. Phase retrieval inverse problem

In PSDH, the intensity of the k-th phase-shifted interferogram can be defined by

k = 0, 1, 2, ..., K (1)

where a (x, y), b (x, y), φ (x, y) and δk represent the background intensity, the modulation
amplitude, the measured phase and the phase shifts, respectively. 

Phase retrieval is a highly ill-posed problem since depending on intensity-only
measurements. Typically, the phase can be retrieved from multiple phase-shifted
interferograms by using the traditional phase demodulation methods. However, here,
the phase retrieved from single interferogram with the DLPSDH method based on a well
-trained DCNN, as shown in Fig. 1, can be expressed as

(2)

where ξ (ꞏ) represents the continuous mapping function of the interferogram Ik to the
extracted phase  and Θ is the neural network fitting parameters. 

Subsequently, the estimate function ξ (ꞏ) can be achieved by solving 

(3)

where f {Θ} is the loss function in our DCNN and Γ  is the batch size. Once the loss
function f {Θ} is minimized, the continuous mapping function ξ (ꞏ) in Eq. (3) can be
obtained to extract the phase from single interferogram, without phase unwrapping.

2.2. Encoder–decoder architecture

In our study, we adopt U-Net [26] to construct an encoder–decoder network structure,
as presented in Fig. 2, which is composed of a contracting path and an expansive path
in the left and right sides, respectively. 

Ik x y  a x y  b x y  φ x y  δk+ ,cos+=

φk
* ξ Ik Θ; =

φk
*

Fig. 1. Schematic of the proposed DLPSDH method. 
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The input of the proposed DCNN is the interferogram, and the output of the proposed
DCNN is the phase image. The contracting path in the DLPSDH method, which is es-
sentially encoding process, consists of the repeated application of two 3× 3 convolu-
tions, each followed by a batch normalization (BN) and a rectified linear unit (ReLU),
and a 2× 2 max pooling operation with stride 2 for down-sampling. Specifically, let

 denote the input interferogram data of the -th convolutional layer, which can be
expressed as 

j = 1, 2, ..., N ( ) (4)

where W, B,  and N ( ) respectively denote the weight, the bias, the convolutional op-
eration, and the number of the channels; ξ (ꞏ) is the function mapping of the -th con-
volutional layer. The BN in Eq. (4) can be expressed as 

(5)

where  and  and  is the output

Fig. 2. Detailed network architecture of the proposed DLPSDH method.
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of the BN layer, ε is a regularization parameter, γ is a scaling factor and β is the shifting
factor. The ReLU activation function in Eq. (4) can be defined as 

ReLU(zj ) = max(0, zj ) (6)

With the function mapping each convolutional layer, the continuous mapping function
ξ{ꞏ} can be expressed as

(7)

where A is the number of the convolutional layers.
Without a loss of generality, take the interferogram size M × N pixels as an example

for illustrating the process of the multichannel features extraction of the interferogram
related to phase retrieval. At each down-sampling step, in the contracting path, we double
the number of the channels, which then becomes 16, 32, 64, 128, 256 and 512, respec-
tively; meanwhile, we, respectively, halve the size of the input interferogram, which
becomes M× N, M/2× N/2, M/4× N/4, M/8× N/8, M/16× N/16 and M/32× N/32 pixels.
The expansive path in the DLPSDH method, which is virtually decoding process, con-
sists of a 2× 2 deconvolution concatenating with correspondingly copied feature map
in the contracting path, and two 3× 3 convolutions, each followed by a BN and ReLU.
At each up-sampling step, we halve the number of the channels, which then becomes
512, 256, 128, 64, 32 and 16, and we simultaneously double the size of the output im-
age, which becomes M/32× N/32, M/16× N/16, M/8× N/8, M/4× N/4, M/2× N/2 and
M× N pixels, respectively, in the expansive path. Finally, the number of the channels
and the size of the output phase image are respectively set as 1 and M× N pixels. It is
worth noting that the proposed DCNN framework is composed of 24 convolutional
and 5 deconvolutional operations. Additionally, in the process of encoding and decod-
ing structure of the input interferogram by using the DLPSDH method, the structures
related to the phase retrieval are retained while those structures, which are not associ-
ated with the phase retrieval, are discarded. The proposed DLPSDH method is actually
a symmetric end-to-end network architecture for phase retrieval without phase unwrap-
ping. 

3. Numerical simulations 

To demonstrate the proof-of-concept of the proposed DLPSDH method, the microsphere
and WBCs are employed as the phase imaging objects. The quantitative phase φ (x, y)
of the homogeneous microsphere can be expressed as 

(8)

where r denotes the radius of the homogeneous microsphere, λ is the wavelength, n1 is
the refractive index of the homogeneous microsphere. The leukocytes are mainly con-
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sisted of the monocyte, lymphocyte, neutrophil, basophil and eosinophil. The mono-
cyte is composed of the ellipsoidal cytoplasm and globular nucleus, and its quantitative
phase φ (x, y) can be defined by

(9)

where a, b and c are the half axis lengths of the ellipsoidal cytoplasm along the x-, y-
and z-axis directions, respectively; r1 denotes the radius of the globular nucleus; n1 and
n2 are the refractive indices of the globular nucleus and ellipsoidal cytoplasm, respec-
tively. The lymphocyte is composed of the globular cytoplasm and nucleus, and its
quantitative phase φ (x, y) can be expressed as 

(10)

where r1 and r2 denote the radii of the globular nucleus and cytoplasm, n1 and n2 are
the refractive indices of the globular nucleus and cytoplasm, respectively. The neutro-
phil is composed of globular cytoplasm, an ellipsoidal and two different globular nu-
clei, and its quantitative phase φ (x, y) can be defined by

(11)

where r1, r3 and r4 are the radii of the two different globular nuclei and globular cyto-
plasm, respectively; a, b and c are the half axis lengths of the ellipsoidal nucleus along
the x-, y- and z-axis directions, respectively; n1, n2, n3 and n4 denote the refractive in-
dices of the globular nucleus, ellipsoidal nucleus, globular nucleus and globular cyto-
plasm, respectively. The basophil is composed of the globular nucleus, ellipsoidal
nucleus and globular cytoplasm, and its quantitative phase φ (x, y) can be expressed as
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(12)

where r1 and r3 denote the radii of the globular nucleus and cytoplasm; a, b and c are
the half axis lengths of the ellipsoidal nucleus along the x-, y- and z-axis directions,
respectively; n1, n2 and n3 represent the refractive indices of the globular nucleus, ellip-
soidal nucleus and globular cytoplasm, respectively. The eosinophil is composed of two
different ellipsoidal nuclei and a globular cytoplasm, and its quantitative phase φ (x, y)
can be defined by

(13)

where r3 denotes the radius of the globular cytoplasm; a1, a2, b1, b2, c1 and c2 are the
half axis lengths of the ellipsoidal nucleus along the x-, y- and z-axis directions, re-
spectively; n1, n2 and n3 are the refractive indices of the two different ellipsoidal nuclei
and the globular cytoplasm, respectively. Note that nm represents the refractive index
of the surrounding medium; α0, α1, β0 and β1 denote the central distances between the
cytoplasm and nucleus along the x- and y-axis directions, respectively.

For homogeneous microsphere and WBCs, a series of phase-shifted interferograms
with a size of 128× 128 pixels and ground-truth phases are generated according to
Eq. (1) and Eqs. (8)–(13) by setting the parameters as follows: 

– the phase shift δ is a random phase shift in the range from 0 to 3π; 
– for the microsphere, the background intensity is a(x, y) = 100exp[–0.015(x2 + y2)],

and the modulation amplitude is b(x, y) = 90exp[–0.015(x2 + y2)]; 
– for the WBCs, the background intensity is a (x, y) = 60exp[–0.02(x2 + y2)], and

the modulation amplitude is b (x, y) = 50exp[–0.02(x2 + y2)]; 
– for the WBCs, zero-mean Gaussian noise with standard deviation σ = 1 is added

to each phase-shifted interferogram; 
– for the microsphere, λ = 532 nm, r = 4 μm, n1 = 1.4, nm = 1.3; 
– for the monocyte, r1 = 3.4 μm, α0 = 0, β0 = 2 μm, n1 = 1.44, a = 6 μm, b = 6.5 μm,

c = 10 μm, n2 = 1.37; 
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– for the lymphocyte, r1 = 2 μm, n1 = 1.45, α0 = –1 μm, β0 = –2 μm, r2 = 5 μm,
n2 = 1.38; 

– for the neutrophil, r1 = 1 μm, n1 = 1.47, α0 = 0, β0 = 2 μm, a = 2 μm, b = 1 μm,
c = 1 μm, n2 = 1.45, α1 = 2.5 μm, β1 = –1 μm, r3 = 2 μm, n3 = 1.43, α3 = –2 μm,
β3 = –1.5 μm, r4 = 5.5 μm, n4 = 1.37; 

– for the basophil, r1 = 1 μm, n1 = 1.47, α0 = 1.8 μm, β0 = –1.5 μm, a = 1.5 μm,
b = 1 μm, c = 1 μm, α1 = –1.8 μm, β1 = –1 μm, n2 = 1.45, r3 = 5 μm, n3 = 1.37; 

– for the eosinophil, n1 = 1.46, a1 = 2 μm, b1 = 1 μm, c1 = 1 μm, α0 = –2.5 μm,
β0 = 1.5 μm, n2 = 1.44, a2 = 2 μm, b2 = 1 μm, c2 = 1 μm, α1 = –1 μm, β1 = –1.5 μm,
r3 = 6 μm, n3 = 1.37; 

– for the white blood cells, λ = 632.8 nm, nm = 1.33.
Base on the parameters above, we construct the minimum number of datasets com-

posed of 1200 randomly phase-shifted interferograms and their corresponding ground
-truth phases for the homogeneous microsphere and inhomogeneous WBCs to test the
proposed DLPSDH method. During training the DLPSDH method, the training epochs
for the microsphere and WBCs are about 42; the batch size is 4; the learning rate is
firstly set to be 0.1, and then it decays with a rate of 0.1 each 20 training epochs; the
adaptive moment estimation (Adam) based optimizer [27] is employed to minimize
the loss function in Eq. (3) by using iterative back-propagation algorithm. 

4. Feasibility study

In order to verify the feasibility of the DLPSDH method, according to Eq. (8), the orig-
inal phase of the homogeneous microsphere is shown in Fig. 3(a). Figure 3(c) presents

Fig. 3. The homogeneous microsphere: (a) the original phase, (b) one-frame interferogram with unknown
phase shift, (c) the retrieved phase with the DLPSDH method, (d) the original height, (e) the calculated
height, and (f ) the central horizontal sections of (d) and (e).

(a) (b) (c)

(d) (e) (f )
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the unwrapped phase extracted from one-frame interferograms with unknown phase
shift, as shown Fig. 3(b), with the DLPSDH method. Note that the interferograms in
the testing dataset are different from those in the training dataset. For comparison, the
original height of the homogeneous microsphere is presented in Fig. 3(d). The calcu-
lated height of the homogeneous microsphere, as shown in Fig. 3(e), can be obtained
from Fig. 3(c) by

(14)

To test the performance of the DLPSDH method, the central horizontal sections of
the original and calculated heights of the homogeneous microsphere in the central
horizontal row are depicted in Fig. 3(f ). As can be seen from Fig. 3(f), the calculated
height curve (circle) almost agrees with the original height curve (solid line). Through
the analysis and calculation, the measuring maximum height of the microsphere is
7.9373 μm. Compared with the original value, that is 8 μm, the error is 0.78%. The result
shows that the DLPSDH method is feasible to retrieve the unwrapped phase from one
-frame phase-shifted interferogram.

5. Phase imaging for cells with substructures

Although WBCs originated from different precursor cells have different substructures,
they play an important role in immune defense in humans. Since WBCs are optically
transparent phase objects, QPI of WBCs has become a very popular field of study. 

To demonstrate the applicability of the proposed method, we firstly present the
original phase of the monocyte cell according to Eq. (9), as shown in Fig. 4(a). It can
be seen from Fig. 4(a) that the monocyte cell has the globular nucleus. One-frame
interferograms with 1 rad phase shift, as presented in Fig. 4(b), are employed to extract
the phase of the monocyte cell, as shown in Fig. 4(c), using the DLPSDH method. To
compare the measuring accuracy, the phases obtained with the AIA and FSPS methods
are respectively presented in Figs. 4(d) and (e). In the AIA method, 4-frame randomly
phase-shifted interferograms are used to retrieve the phase of the monocyte cell. In the
FSPS algorithm, the phase of the monocyte cell is extracted from 4-frame interfero-
grams with 0, π/2, π and 3π/2 known phase shifts. It is worthy to note that both the
AIA and FSPS methods require the additional phase unwrapping operation, compared
with the DLPSDH method; moreover, the FSPS method needs known phase shifts.
Here, we introduce the root of mean square error (RMSE), which can be described by

(15)

where  and  are the retrieved and original phases, respectively. Through the cal-
culation, the root mean square errors (RMSEs) of the monocyte cell with the proposed
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method, AIA and FSPS methods, respectively, are 0.053, 0.078 and 0.079 rad. Obvi-
ously, it can be seen that the accuracy of the phase extraction with the proposed method
is higher than those with the AIA or FSPS methods, showing the applicability of the
proposed method. 

Secondly, we present the original phase of the neutrophil cell according to Eq. (11),
as shown in Fig. 5(a), and its interferogram with 5 rad phase shift is shown in Fig. 5(b).
It can be clearly seen from Fig. 5(a) that the neutrophil cell has the globular cytoplasm,
an ellipsoidal and two globular nuclei. For the neutrophil cell, to investigate the per-
formance of the DLPSDH method in the presence of noise, Gaussian noise with zero
-mean and different standard deviations σ are added to a set of randomly phase-shifted
interferograms. Here, we introduce the peak signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM) [28], which can be respectively expressed as 

(16)

(17)

where φ1 is the true phase image, and φ2 is the extracted phase with different algo-
rithms; t is set as 8; μ1, τ1, μ2 and τ2 are, respectively, the mean and standard deviation
of the φ1 and φ2 phase images; τ1,2 is the cross variance of φ1 and φ2; c1 and c2 are

(b)(a)

(c) (d) (e)

Fig. 4. The monocyte cell: (a) the original phase, (b) one-frame interferogram, (c), (d) and (e) the extracted
phases with the DLPSDH, AIA and FSPS methods, respectively.
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constants, respectively. The phases of the noisy neutrophil cell are extracted using the
proposed and AIA methods, and then the values of SSIM and PSNR of the phase images
are shown in Figs. 5(c) and (d), respectively. From Fig. 5(c), we can know that when
σ increases from 1 to 5, the values of SSIM decrease in the AIA method; but, the values
of SSIM in the proposed method are almost unchanging. From Fig. 5(d), we can know
that with the increase of standard deviations, the values of PSNR decrease in the pro-
posed and AIA methods. We can conclude that the SSIMs and PSNRs of the phase
images with the DLPSDH method have better values, compared with the AIA algo-
rithm. The DLPSDH method has better anti-noise performance in QPI of the neutrophil
cell. 

Thirdly, according to Eq. (12), the original phase of the basophil cell is shown in
Fig. 6(a). To compare the accuracy of phase retrieval, the interferogram with 7 rad
phase shift for the basophil cell, as shown in Fig. 6(b), is used to retrieve the phase
with different methods. We present the phases obtained with the DLPSDH, AIA and
FSPS methods in Figs. 6(c), (d) and (e), respectively. To test the performance of  the
DLPSDH method, the horizontal sections of the original and calculated height images
of the basophil cell in the horizontal row are depicted in Fig. 6(f ). Through the calcu-
lation, the RMSEs of the basophil cell with the DLPSDH method, AIA and FSPS meth-
ods, respectively, are 0.033, 0.093 and 0.094 rad. From Fig. 6(f ), the calculated height

(b)(a)

(c) (d)

Fig. 5. The neutrophil cell: (a) the original phase, (b) one-frame interferogram, (c) and (d) the values of
SSIM and PSNR corresponding to different standard deviations of zero-mean Gaussian noise, respective-
ly, with the DLPSDH and AIA methods. 
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curves almost agree with the original height curve, showing the applicability of the
proposed method for QPI of the basophil cell.

Finally, in the presence of random phase shifts, we also study the phase extraction
of the lymphocyte cell and eosinophil cell, respectively, according to Eqs. (10) and (13).
For the eosinophil cell, its RMSEs with the DLPSDH method, AIA and FSPS methods,
respectively, are 0.075, 0.087 and 0.107 rad; for the lymphocyte cell, its RMSEs with
the DLPSDH method, AIA and FSPS methods respectively are 0.091, 0.226 and
0.227 rad. Note that these interferograms in the testing dataset are different from those
in the training dataset. The results above show that the DLPSDH method can recover
the phase for different types of WBCs as long as it can establish the continuous map-
ping function relation of  the interferogram to the phase, revealing better generalization
performance. 

6. Conclusions

In summary, we have proposed an end-to-end deep-learning phase-shifting digital
holography method to simultaneously deal with the problems of phase retrieval and
phase unwrapping. With a well-trained deep convolutional neural network, this method
can establish the continuous function mapping relation between the interferogram and
the phase. The proposed method can directly retrieve the phase of white blood cells
from only one-frame phase-shifted interferogram, without phase unwrapping opera-
tion. Compared with other traditional phase demodulation methods, the proposed
method has better phase retrieval accuracy. Simulation experiments demonstrate the
feasibility and applicability of the proposed method. Additionally, owing to easily re-

(a) (b) (c)

(d) (e) (f )

Fig. 6. The basophil cell: (a) the original phase, (b) one-frame interferogram, (c), (d), (e) the extracted
phases with the DLPSDH, AIA and FSPS methods, and (f ) the horizontal sections of (a), (c), (d) and (e).
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training the well-trained deep neural network using new dataset, this method will pro-
vide a solution for phase imaging of biological cells with complex substructures.
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