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We propose a high-quality infrared and visible image fusion method based on a deep wavelet-dense
network (WT-DenseNet). The WT-DenseNet includes three network layers, the hybrid feature ex-
traction layer, fusion layer, and image reconstruction layer. The hybrid feature extraction layer is
composed of a wavelet and dense network. The wavelet network decomposes the feature map of
the visible and infrared images into low-frequency and high-frequency components, respectively.
The dense network extracts the salient features. A fusion layer is designed to integrate low-fre-
quency and salient features. Finally, the fusion images are outputted by an image reconstruction
layer. The experimental results demonstrate that the proposed method can realize high-quality in-
frared and visible image fusions, and the performance of the proposed method is better than that
of the six recently published fusion methods in terms of contrast and detail performance. 
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1. Introduction

The infrared thermal imaging technology utilizes the thermal radiation of objects to
reconstruct images, and has many advantages over the visible imaging technology,
such as imaging targets in the environments of the low light, wind, sand, smoke, and
so on [1]. However, infrared images usually encouter the problems of lacking details
of the scenario [2] and low resolution [3]. Unlike the infrared thermal imaging tech-
nology, the visible imaging technology can capture the details of the scene, such as
edges and textures, making the visible images more in line with the human vision [4].
Infrared and visible image fusion can generate a high quality and resolution image with
both thermal and detail information [5], which has wide potential applications, such
as the military detection, medical diagnosis, and remote sensing [6].
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In recent years, many infrared and visible image fusion methods have been proposed.
These methods can be divided into three categories, the multi-scale transform [7], deep
learning [8], and other methods. Multi-scale transform methods mainly rely on the
predefined transforms and corresponding levels for the decomposition and reconstruc-
tion [9]. The feature extraction and fusion rules of these methods are manually de-
signed. However, the designs of diverse feature extraction and fusion rule make the
fusion methods complicated [10]. Consequently, the performance of multi-scale trans-
form methods is limited [7]. Nevertheless, deep learning methods can extract various
features from source images without the manual intervention, simplify the fusion rules.
For instance, LIU et al. [11] proposed an infrared and visible image fusion method based
on the convolutional neural network. This method only took the result of the last layer
as the image features, which lose many useful features obtained by the middle layer.
To solve this problem, LI et al. [12] developed a DenseFuse network, where a dense
block is adopted to get effective features from the infrared and visible image. However,
the down-sampling strategies before fusion still inevitably led to the blurring of low
-frequency information and the losing of visible texture details. 

To address the low-frequency information blurring and visible texture detail losing
problems caused by down-sampling strategies, we propose an infrared and visible im-
age fusion method with a deep wavelet-dense network (WT-DenseNet). The proposed
method includes three steps. Firstly, both infrared and visible images are fed into
WT-DenseNet. After that, the infrared and visible images are filtered by a wavelet
transform which is used to extract the low-frequency features. Meanwhile, the salient
features of infrared and visible images are extracted by the dense network. The low
-frequency features are then added to salient features. Secondly, a weighted-addition
strategy is used to integrate features extracted from visible and infrared images. Different
from many algorithms that use a weighted-average strategy to assign weights [13], in
WT-DenseNet, the visible and the infrared images are given different weights within
a certain range, and the thermal information weight of the infrared image is used to
keep the weight of the visible image unchanged. Finally, the fused features are recon-
structed by the deconvolution layer. The effectiveness of the proposed method is qual-
itatively and quantitatively validated. 

The main contributions are described as follows. 
1) We propose a high-quality infrared and visible image fusion method by using

a WT-DenseNet. The WT-DenseNet uses a dense block to extract deep features, retain
the details of the image texture, and thermal information. However, the dense block
blurs and loses some parts of the low-frequency information. We design a wavelet
transform block to extract low-frequency information, which makes up for the loss of
low-frequency information, smooths the redundant image information, and realizes the
optimization of image fusion.

2) We develop a hybrid feature extractor to extract multiple features. Multiple fea-
tures include shallow features, deep features and low frequency features of the original
image, and the fusion of multiple features improves the quality of the fused image.
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3) We design a data preprocessing method that is used for the infrared and visible
image registration and build an infrared and visible imaging system used to collect in-
frared and visible images for expanding the dataset.

2. Method

2.1. Experimental setup construction

An infrared and visible imaging system is built, as shown in Fig. 1. The imaging system
includes an infrared module (IM), visible module (VM), and personal computer (PC).
The IM is the ThermoX1 (uncooled infrared thermal imaging module, focal length 4 mm)
which is used to obtain infrared images (resolution 320×240 pixels). Here, the IM cap-
tures the infrared signals whose wavelengths are in the range of 8–14 μm. The VM is
composed of a visible camera (FL3-U3-32S2C-CS) and a lens (focal length 6 mm, focal
range 0.1 mm ~ ∞) which is utilized to obtain visible images (resolution 1920×1080 pix-
els). The fields of view (horizontal × vertical) of the infrared and visible cameras are
81.9°×61.2° and 78°×78°, respectively. 

2.2. Data preprocessing

Before the image fusion, images from different source should be strictly aligned [14].
Since the resolution of the infrared and visible images collected by the experimental
setup is different, thus the infrared and visible images are registered [15]. Figure 2
shows an example of the infrared and visible image registration, where the image
(infrared and visible) fragmentary and saturated are not considered in the image regis-
tration process. Additionally, the image registration is achieved in a pixel-by-pixel
manner. Image processing is divided into three steps. Due to the low-resolution prob-
lem of the infrared sensor, the bicubic interpolation alorithm [16] is firstly used to mag-
nify the infrared image (320×240 pixels) by three times, and an infrared image with
a resolution of 960×720 pixels is obtained. That is to say, the original IR image
(320×240 pixels) is rescaled three times (×3) to a larger one (960×720 pixels). Sec-
ondly, because the region of interest area with coordinates (565, 200, 395, 160) in the

Fig. 1. Infrared and visible imaging system.
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visible image (size 960×720 pixels) just coincides with the infrared image after three
times magnification, hence the area of the visible image is cropped as the registered
visible image. Note that the infrared images have lots of redundant information, and
the bicubic interpolation also brings the redundant information to the image. To solve
these problems, a non-local means denoising algorithm is used to smooth the infrared
images [17]. Here, the standard deviation of the noise σ, patch window p, research
window s and filtering parameter h are set as σ = 40, p = 7×7, s = 35×35, and h =
= 0.35σ = 14 [17]. 

2.3. Deep wavelet-dense network

The network architecture of the proposed WT-DenseNet consists of three layers, the
hybrid feature extraction layer, fusion layer, and image reconstruction layer, as
shown in Fig. 3. The input preregistered infrared and visible images are denoted as K1
and K2, respectively. Here the infrared, visible, and fused images are all supposed to
be grayscale images. The infrared and visible image fusion with WT-DenseNet in-
cludes three steps, which are shown as follows.

Step 1: Extracting multiple features from the infrared and visible images using
a hybrid feature extraction layer.

Fig. 2. Example of the infrared and visible image registration.

Fig. 3. The network structure of the proposed WT-DenseNet. K1, infrared image; K2, visible image; Conv,
convolution layer; Uconv, deconvolution layer.
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The hybrid feature extraction layer is shown in Fig. 3. Firstly, both the infrared and
visible images are inputted into the first layer (Conv1) which uses 3×3 filters and rec-
tified linear unit (ReLU) operations to extract rough features. This can solve the prob-
lem of low extraction efficiency and low feature quality in traditional manual feature
extraction methods. Then DenseBlock and WaveletBlock are respectively used to ob-
tain the low-frequency and salient features of infrared and visible images, by which
the multiple features are constructed. Finally, feature channels of the DenseBlock and
WaveletBlock are used as the splicing dimension. Specially, the feedforward connec-
tion method [18] is used for the sake of increasing feature contextual information,
where short direct connections are established between each layer and all layers by
feedforward. 

The DenseBlock contains three dense layers, each of which uses 16 channels as
the output of the high-dimensional mapping (stride: 1). The three dense layers are
densely stacked. Besides, the dense layers are composed of 3×3 filters and ReLU.
DenseNet can establish connections between different layers, thereby enhancing fea-
ture reuse. As shown in Fig. 4, the WaveletBlock that includes five wavelet (WT) layers
(WT1, WT2, WT3, WT4, and WT5) is used to extract the useful information. The first
four WT layers are composed of a convolution module with 3×3 filters, batch normal-
ization (BN), and ReLU. 

The last layer WT5 only possesses a convolution layer which is used to generate
the residual image. Here, the smooth features are first extracted by WT2 and then pro-
cessed by the two-dimension (2D) discrete wavelet transform (DWT). DWT can sep-
arate the image into low frequency and high frequency components. Low-frequency
components represent areas with slow changes in brightness and grayscale values,
while high-frequency components correspond to drastic changes in the image, such as
edges and details. After that, the low-frequency information is wrapped in the WT3 layer
for output. Specifically, in DWT, four filters, i.e., fLL, fLH, fHL, and fHH, are used
to convolve the rough features [19]. Here, fLL signifies the low-pass filter, fLH, fHL,
and fHH denote high-pass filters. Note that the Haar wavelet is adopted as the default
wavelet function in WaveletBlock. In the two demensional Haar wavelet functions, the
filters fLL, fLH, fHL, and fHH are defined as follows, 

(1)

Fig. 4. The detail structure of  WaveletBlock; Conv, convolution block; WT, wavelet block; DWT, dis-
crete wavelet transforms.
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The low-frequency filter fLL and feature maps x are choosen for the convolution
operation, 

(2)

where  is the convolution operator,  denotes a standard down-sampling operator
with a factor of  2. Given a feature map x with a size of m×n, the (m, n)-th value of xLL
after 2D Haar transform can be written as,

xLL(i, j) = x (2i –1, 2j – 1) + x (2i –1, 2j ) + x (2i, 2j – 1) + x (2i, 2j) (3)

where i and j denote the index of pixel positions. Through the Haar transform in the
low-frequency band, the features of the low-frequency band are integrated and out-
putted.

Step 2: Integrating the features of infrared and visible images by a weighted-addi-
tion strategy with the fusion layer.

In the testing phase, the infrared and visible images are fed into the hybrid feature
extraction layer, and multiple feature maps are generated. A weighted-addition strategy
is adopted to combine multiple feature maps, given by

(4)

where (i, j ) denotes the pixel coordinate in the feature maps, m is the number of feature
maps, m = {1, 2, 3, ..., 128},  and  are the infrared and visible feature maps,
respectively. Note that α is a balance coefficient. The infrared thermal information in
the fused image can be changed by adjusting the balance coefficient α. 

Step 3: Reconstructing high-resolution feature maps by a deconvolution with the
image reconstruction layer.

The image reconstruction layer is to reconstruct the feature maps outputted by the
fusion layer. As shown in Fig. 3, the image reconstruction layer includes three decon-
volution layers (Uconv1, Uconv2, Uconv3). In each layer, a deconvolution is used for
up-sampling and to output the fused image.

3. Simulation results and analysis

In the training phase, the MS-COCO [20] dataset which contain 80000 color images
is used as training images. The color images are changed into gray scale images.
The reason for using the MS-COCO dataset is that the infrared images (gray scale)
are insufficient. Since the purpose of  the training is to extract the features of the images,
thus training with MS-COCO dataset can achieve the same effect as that trained by
the dataset containing the infrared and visible image pairs. To reduce the training time,
the training images are resized to 256×256 pixels. Since the purpose of training is to
obtain a feature extractor, thus only the hybrid feature extraction layer and image re-
construction layer are considered in the training phase. Here, the fusion layer is dis-

xLL fLL x 2=

 2

f m i j  αK1
m i j  K2

m i j +=

K1
m K2

m
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carded. As for the configurations of the loss function, we follow the method in
DenseFuse [12], given by

loss = Lssim + Lp (5)

where Lssim and Lp are respectively the structural similarity loss and pixel loss,

(6)

where O and I respectively represent output and input images, SSIM(ꞏ) denotes struc-
tural similarity, which represents the structural similarity of O and I;  indicates the
Euclidean distance between O and I. The batch size and epochs are set as 4 and 100,
respectively. To balance the thermal information and detailed information of the fusion
results, α is set as 0.5 which is obtained by various experiments. 

To test the effectiveness and robustness of the WT-DenseNet, ten infrared-visible
image pairs from the public dataset [21] are tested. The results of WT-DenseNet are
compared with those of other six fusion methods, including DRTV [22], BGR [23],
weighted least square (WLS) [24], convolutional traditional wavelet transform (WT),
U2Fusion [25] and DenseFuse [12]. To show the original and default fusion perfor-
mance of each method, we do not modify or improve the parameter configurations of

Lssim 1 SSIM O I –=

Lp O I– 2=



ꞏ 2

Fig. 5. Test images and fusion results of  “person and door”.
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Fig. 6. Test images and fusion results of  “person and tent”.

Fig. 7. Test images and fusion results of  “car and house”.
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the compared methods (DRTV, BGR, WLS, U2Fusion and DenseFuse). We use the de-
fault parameters of each method. As the proposed WT-DenseNet mainly is based on
the wavelet fusion and DenseFuse, thus we compare the wavelet fusion and DenseFuse
as the ablation experiments in comparative experiments. The fusion results are shown
in Figs. 5–7. In Fig. 5, the fusion result of WT-DenseNet has the clearest and most
ground textures, indicating that WT-DenseNet has best detail extraction capabilities.
On the contrary, DRTV and BGR cannot restore the texture of the ground textures, and
the details are not satisfactory. In addition, DRTV, BGR, WLS, WT, and U2Fusion con-
tain much redundant information, especially BGR and WT. 

However, WT-DenseNet can reduce the redundant information, and the fusion result
clarity of WT-DenseNet is the best. Image details of the fusion results of DenseFuse are
similar and in visual effects are not as good as WT-DenseNet. Although WT-DenseNet
performs well in terms of details and clarity, its thermal information recognition ability
is poor compared to WLS. WT-DenseNet can easily extract the highlight area of the
visible image as the heat source information and take it into the fusion image together,
which makes the thermal information (e.g., person and door) from the infrared image
blurred. As shown in Fig. 5, the sky appears as a highlight on the visible image, and the
brightness intensity is also highlighted in the fusion result of WT-DenseNet. The same
result is also found in Figs. 6 and 7.

4. Experimental results and analysis

4.1. The experimental details

The experimental infrared and visible source images are collected from the imaging
system in Fig. 1. During the experiments, 300 pairs of source images are adopted from
different scenes including indoor and outdoor. The resolutions of the visible and in-
frared images are 1920×1080 pixels and 320×240 pixels, respectively. The visible and
infrared images are registered by the method in Section 2.2. The parameter configu-
rations and training process of the WT-DenseNet are the same as in Section 3. The pro-
ject of WT-DenseNet is implemented in a workstation (Intel Core i910900X, 32GB
RAM, GTX2080Ti) with PyTorch. 

4.2. Fusion method evaluation

Figures 8 and 9 show the fusion results of outdoor (strong light) and indoor scenarios
(low light), respectively. In Fig. 8, DRTV, WLS, WT and U2Fusion do not improve
the fusion image quality because they all look blurry. The fusion results of BGR and
DenseFuse are softer, but the edge information is not obvious enough. Note that the
WT fusion method has some limitations, such as generating the blockiness in the fused
image, producing artifacts on diagonal edges, and outputting low-quality image.

In Fig. 9, DRTV has the obvious contour information, but the edge line looks a little
abrupt. DRTV, BGR and WLS can effectively retain the thermal information. U2Fusion
has difficulty seeing details in low light but the insufficient visible information also
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Fig. 8. Test images and fusion results of  “outdoor”.

Fig. 9. Test images and fusion results of  “ indoor”.
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reduces the image quality. In Figs. 8 and 9, the results of WT-DenseNet are the softest,
and have the sharpest edges and the least redundant information. Moreover, WT-DenseNet
is slightly inferior to DRTV, BGR and WLS in terms of the thermal information extrac-
tion. Compared with DenseFuse, WT-DenseNet has higher contrast and clearer details.
In short, WT-DenseNet performs well at different scenarios in Figs. 8 and 9, indicating
that WT-DenseNet performs better in contrast and detail. 

Figure 10 shows the fusion results of the night environment, where the lights are
turned off. Here, the visible image lacks effective imaging information. In Fig. 10,
DRTV, BGR and WLS can well keep the infrared information, but they lose most of
the visible image information. WT loses most of the visible image information and
some infrared image information, while U2Fusion performs even worse than WT.
DenseFuse and WT-DenseNet preserve most of the infrared and visible image infor-
mation. Nonetheless, the fused image details and contrast of  WT-DenseNet are supe-
rior to DenseFuse.

Besides, another group of experimental results is shown in Fig. 11. For better com-
parison, a small feature area is cropped from the source images and put in the lower
right corner of the corresponding source images. The feature area image is surrounded
by a red rectangle border. In Figs. 11 (C3 and D3), people’s facial features are not clear
enough. Figures 11 (BGR) are slightly better than Figs. 11 (DRTV and U2Fusion). Fig-
ure 11 (WT) has more artificial redundant information and the infrared thermal infor-
mation is lost. From the five images in Fig. 11 (WT and U2Fusion), the low contrast

Fig. 10. Test images and fusion results of  “people” in night environment. 
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Fig. 11. Experimental results obtained by DRTV, BGR, WLS, WT, U2Fusion, DenseFuse and WT-DenseNet.
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makes the image look worse. Figures 11 (WLS and DenseFuse) are visually good but
they are not sufficient to provide all the details of the scene and contain a lot of redun-
dant information. 

In Fig. 11 (A1), the number on the clothes is 98, but Figs. 11 (C1-H1) can only get
a number of 96. On the contrary, Fig. 11 (I1) can accurately observe the number 98,
which means that WT-DenseNet can accurately identify tiny details. Since the target
intensity of the infrared image is determined by temperature and radiated heat [26],
Fig. 11 (B5) can clearly observe the palm print (thermal information) on the doll. How-
ever, the visible image Fig. 11 (B5) cannot reflect the thermal information. The thermal
information of Fig. 11 (E5) is the most obvious but lacks the detail information, such
as the eyes of a doll. In Figs. 11 (H5 and I5), the details and the highlighted thermal
information can be observed. Compared with the DenseFuse, WT-DenseNet has richer
image details and texture information. 

As the results shown in Fig. 11, WT-DenseNet preserves more detailed informa-
tion, such as details of clothing, text on the wall, facial features, texture of the basket,
and details of the doll. Figures 11 (DRTV and BGR) cannot get enough details of visible
images. For instance, as Figs. 11 (C1 and D1) shown, the numbers cannot be observed.
Objectively, the fusion results of WT-DenseNet in Fig. 11 are visually clearer, smooth-
er, and more natural than the other six methods. The clarity of WT-DenseNet is con-
siderably improved. The reason is that WT-DenseNet can keep the low-frequency
information which is used to optimize the fused image, making the fusion image more
in line with human visual observation. The existing deep-learning-based image fusion

Fig. 12. Quantitative comparisons of seven fusion methods on sixteen infrared and visible image pairs.
WT-Dense: WT-DenseNet. 
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methods typically extract the salient features of infrared and visible images, and often
ignore the acquisition of low-frequency features. However, WT-DenseNet adds low
-frequency features without reducing salient features, which is beneficial to reduce the
redundant information of the fused image and improve the image quality. 

Four quality metrics are utilized to objectively evaluate the performance of
WT-DenseNet and other six methods, including the concept reflecting distribution and
contrast (SD) [23], sum of the correlations of differences (SCD) [24], pixel feature
mutual informations (FMIpixel) [26], and correlation coefficient (CC) [27]. Here,
a larger value of the metrics (SD, SCD, FMIpixel and CC) means a better performance.
Figure 12 shows quantitative comparison results on sixteen infrared and visible image
pairs. The Table shows the average quality metrics for sixteen fused images and the
best values for FMIpixel, SD, SCD, and CC are marked in bold. As shown in Fig. 12,
the four metric values of WT-DenseNet are not always the biggest. However, it can be
seen from the Table that WT-DenseNet can produce the largest average values and ex-
hibits the best performance for the four metrics. From Figs. 5–12 and the Table,
WT-DenseNet are strongly correlated with the source image, and the performance of
WT-DenseNet is superior to the other six methods in detail and smoothness.

5. Conclusion

We have experimentally presented an infrared and visible fusion method by WT-DenseNet,
which offers high-quality fusion images. The implementation process of  WT-DenseNet
is introduced in detail. The WT-DenseNet is trained with grayscale images from
MS-COCO dataset and tested using the experimental infrared and visible images.
The image fusion performance of the proposed method is compared with six fusion
methods, DRTV, BGR, WLS, WT, U2Fusion and DenseFuse. The results show that
image quality of the proposed method is better than that of the six methods in terms
of clarity and detail. The proposed method can be applied in many areas, such as mil-
itary detection, medical diagnosis and remote sensing. However, the infrared image
thermal information recognition ability of the proposed method needs to be enhanced.
In future work, we will pay more attention to the recognition and retention of thermal
information. Besides, the future work will also focus on the optimizations and practical
applications (e.g., automatic detection of targets) of the proposed method.

T a b l e. The average of quality metrics for 50 fused images. WT-Dense: WT-DenseNet.

FMIpixel SD CC SCD

DRTV 0.92556 9.64703 0.42592 0.90979

BGR 0.91236 9.94664 0.59034 1.6523

WLS 0.93200 9.34177 0.57271 1.65863

WT 0.92856 9.00591 0.56137 1.15669

U2Fusion 0.92976 8.90272 0.56499 1.40703

DenseFuse 0.93659 9.48152 0.61681 1.58489

WT-Dense 0.94278 10.3814 0.62010 1.74526



Infrared and visible image fusion with deep wavelet-dense network 63

Funding
National Natural Science Foundation of China (62173098, U20A6003, U2001201, U1801263, U1701262),
Guangdong Provincial Key Laboratory of Cyber-Physical System (2020B1212060069).

Data availability
The data that support the findings of this study are available from the corresponding author upon
reasonable request.

Disclosures
The authors declare no conflicts of interest.

References

[1] FENG Y.F., LU H.Q., BAI J.B., CAO L., YIN H., Fully convolutional network-based infrared and visible
image fusion, Multimedia Tools and Applications 79, 2020: 15001–15014, DOI: 10.1007/s11042-
019-08579-w. 

[2] LIU Y., DONG L., JI Y., XU W., Infrared and visible image fusion through details preservation, Sen-
sors 19(20), 2019: 4556, DOI: 10.3390/s19204556. 

[3] MA J., MA Y., LI C., Infrared and visible image fusion methods and applications: A survey, Infor-
mation Fusion 45, 2019: 153–178, DOI: 10.1016/j.inffus.2018.02.004. 

[4] MA J., ZHANG H., SHAO Z., LIANG P., XU H., GANMcC: A generative adversarial network with
multiclassification constraints for infrared and visible image fusion, IEEE Transactions on Instru-
mentation and Measurement 70, 2020: 5005014, DOI: 10.1109/TIM.2020.3038013. 

[5] LI H., QI X.B., XIE W.Y., Fast infrared and visible image fusion with structural decomposition,
Knowledge-Based Systems 204, 2020: 106182, DOI: 10.1016/j.knosys.2020.106182. 

[6] ZHANG H., MA J., SDNet: A versatile squeeze-and-decomposition network for real-time image fusion,
International Journal of Computer Vision 129, 2021: 2761–2785, DOI: 10.1007/s11263-021-01501-8. 

[7] ZHANG Q., LIU Y., BLUM R.S., HAN J.G., TAO D.C., Sparse representation based multi-sensor image
fusion for multi-focus and multi-modality images: A review, Information Fusion 40, 2018: 57–75,
DOI: 10.1016/j.inffus.2017.05.006. 

[8] ZHANG H., XU H., TIAN X., JIANG J.J., MA J.Y., Image fusion meets deep learning: A survey and per-
spective, Information Fusion 76, 2021: 323–336, DOI: 10.1016/j.inffus.2021.06.008. 

[9] ZHU P., DING L., MA X.Q., HUANG Z.H., Fusion of infrared polarization and intensity images based
on improved toggle operator, Optics & Laser Technology 98, 2018: 139–151, DOI: 10.1016/
j.optlastec.2017.07.054. 

[10] MA J.Y., XU H., JIANG J.J., MEI X.G., ZHANG X.P., DDcGAN: A dual-discriminator conditional
generative adversarial network for multi-resolution image fusion, IEEE Transactions on Image
Processing 29, 2020: 4980–4995, DOI: 10.1109/TIP.2020.2977573. 

[11] LIU Y., CHEN X., CHENG J., PENG H., WANG Z.F., Infrared and visible image fusion with convolutional
neural networks, International Journal of Wavelets, Multiresolution and Information Processing
16(3), 2018: 1850018, DOI: 10.1142/S0219691318500182. 

[12] LI H., WU X.J., DenseFuse: A fusion approach to infrared and visible images, IEEE Transactions
on Image Processing 28(5), 2019: 2614–2623, DOI: 10.1109/TIP.2018.2887342. 

[13] GARCIA F., MIRBACH B., OTTERSTEN B., GRANDIDIER F., CUESTA A., Pixel weighted average strategy
for depth sensor data fusion, 2010 IEEE International Conference on Image Processing, 2010:
2805–2808, DOI: 10.1109/ICIP.2010.5651112. 

[14] ZITOVA B., FLUSSER J., Image registration methods: A survey, Image and Vision Computing 21(11),
2003: 977–1000, DOI: 10.1016/S0262-8856(03)00137-9. 

[15] CUN X.D., PUN C.M., GAO H., Applying stochastic second-order entropy images to multi-modal
image registration, Signal Processing: Image Communication 65, 2018: 201–209, DOI: 10.1016/
j.image.2018.03.021. 



64 YANLING CHEN et al.

[16] LIN C.C., SHEU M.H., CHIANG H.K., LIAW C., WU Z.C., The efficient VLSI design of BI-CUBIC con-
volution interpolation for digital image processing,2008 IEEE International Symposium on Circuits
and Systems (ISCAS), 2008: 480, DOI: 10.1109/ISCAS.2008.4541459. 

[17] BUADES A., COLL B., MOREL J.M., Non-local means denoising, Image Processing On Line 1, 2011:
208–212, DOI: 10.5201/ipol.2011.bcm_nlm. 

[18] HUANG G., LIU Z., VAN DER MAATEN L., WEINBERGER K.Q., Densely connected convolutional networks,
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261–2269,
DOI: 10.1109/CVPR.2017.243. 

[19] MALLAT G.S., A theory for multiresolution signal decomposition: the wavelet representation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 11(7), 1989: 674–693, DOI: 10.1109/
34.192463. 

[20] LIN T.Y., MAIRE M., BELONGIE S., HAYS J., PERONA P., RAMANAN D., DOLLAR P., ZITNICK C.L., Micro-
soft COCO: common objects in context, [In] Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, T. Tuytelaars [Eds.], ECCV 2014, Lecture Notes in Computer Science, Vol. 8693,
Springer, Cham, 2014: 740–755, DOI: 10.1007/978-3-319-10602-1_48. 

[21] TOET A., TNO Image Fusion Dataset, 2014. 
[22] DU Q., XU H., MA Y., HUANG J., FAN F., Fusing infrared and visible images of different resolutions

via total variation model, Sensors 18(11), 2018: 3827, DOI: 10.3390/s18113827. 
[23] ZHANG Y., ZHANG L.J., BAI X.Z., ZHANG L., Infrared and visual image fusion through infrared feature

extraction and visual information preservation, Infrared Physics & Technology 83, 2017: 227–237,
DOI: 10.1016/j.infrared.2017.05.007. 

[24] MA J.L., ZHOU Z.Q., WANG B., ZONG H., Infrared and visible image fusion based on visual saliency
map and weighted least square optimization, Infrared Physics & Technology 82, 2017: 8–17, DOI:
10.1016/j.infrared.2017.02.005. 

[25] XU H., MA J.Y., JIANG J.J., GUO X.J., LING H.B., U2Fusion: A unified unsupervised image fusion
network, IEEE Transactions on Pattern Analysis and Machine Intelligence 44(1), 2022: 502–518,
DOI: 10.1109/TPAMI.2020.3012548. 

[26] HAGHIGHAT M., RAZIAN M.A., Fast-FMI: Non-reference image fusion metric, 2014 IEEE 8th Inter-
national Conference on Application of Information and Communication Technologies (AICT), As-
tana, Kazakhstan, Oct. 2014, DOI: 10.1109/ICAICT.2014.7036000. 

[27] DING M., YAO Y., LI W., CAO Y., Visual tracking using locality-constrained linear coding and
saliency map for visible light and infrared image sequences, Signal Processing: Image Communi-
cation 68, 2018: 13–25, DOI: 10.1016/j.image.2018.06.019. 

Received February 24, 2022


