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In order to control the distribution characteristics of the far-field ring-shaped array, we introduce
a new light source to produce adjustable far-field distribution by the method of weight function
superposition. It has been shown that, by changing the parameters of the light source, one can obtain
far-field with various distribution, including distribution with decrease in spectral intensity of spec-
ified rings, distribution with disappearances of specified rings, distribution with different spectral
intensity of part of lobes in the continuous rings, distribution with part of the lobes in specified
rings disappearing and distribution with some lobes in specified rings being stronger. These results
will produce some novel far-field distributions which may provide a new idea for further study con-
cerning about the manipulations of far-field array distribution.
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1. Introduction

It is an important problem to obtain partially coherent sources which have different
characteristics on propagation [1–14]. According to the optical coherence theory,
Schell-model source is the most basic and common light source, which is characterized
by the spectral degree of coherence between any two points being determined by the
difference only. As we all know, the far-field intensity distribution can be changed by
changing the structure of the correlation function [15]. In recent years, partially coherent
beams with different Gaussian correlated Shell-model functions, which can produce
the distribution with different characteristics in the far field were studied [16–23]. For
instance, MEI et al. discussed a novel source which can produce a ring-shaped far-field
array distribution [24] and ZHENG et al. presented twisted ring-shaped Gaussian Schell
-model array source, which can make each lobe in the ring-shaped array rotate clock-
wise along the propagation distance [25]. These works lay a theoretical basis for the
creation of the new sources.



88 CHENYUAN YUAN et al.

On the other hand, the ring-shaped optical lattice has attracted a lot of interest be-
cause of its potential applications, such as quantum field, manipulating for cold atoms
or particles and Bose–Einstein condensate [26–31]. Recently, ring-shaped optical lat-
tice has also been applied in other fields such as scattering. For example, WANG and his
collaborators controlled distribution of particulate collection, producing a ring-shaped
optical lattice distribution [32]. In this study, we will consider the superposition of the
weight functions to get a new source and do some novel manipulations in the ring
-shaped far-field array distribution. We will first describe the possibility of producing
and manipulating a ring-shaped adjustable far-field array produced by ring-shaped ad-
justable Gaussian Schell model array (RAGSMA) source. Then, the method of how to
manipulate the far-field distribution by choosing the parameters of the source has been
described in detail.

2. Theory

The properties of light source at a pair of points  and  can
be described by the cross-spectral density (CSD) functions  When the
source is the classical Schell-model source, its CSD function can be expressed as [33]

(1)

where  and  are the spectral density and the spectral degree of
coherence in the source plane, respectively. To make sure that the source is physically
genuine, the sufficient condition should be expressed by the integral [34] 

(2)

where p (v) is an arbitrary non-negative weight function, H0(ρ', v) is an arbitrary kernel
and the asterisk stands for complex conjugate. H0(ρ', v) can be given as a Fourier-like
structure for the Schell-model sources [34]

(3)

where τ (ρ' ) is a complex amplitude profile. By substituting Eq. (3) into Eq. (2), one
can obtain,

(4)

where

(5)

is the Fourier transform of the weight function p (v). In order to generate a Gaussian
array profile in the far-field, we propose the expression for function pl (v) as [24]

ρ'1 x'1 y'1 = ρ'2 x'2 y'2 =
W ρ'1 ρ'2 .

W 0  ρ'1 ρ'2  S 0  ρ'1  S 0  ρ'2  μ 0  ρ'2 ρ'1– =

S 0  ρ'1  μ 0  ρ'2 ρ'1– 

W 0  ρ'1 ρ'2  p v  H 0
* ρ'1 v  H0 ρ'2 v  d2 v=

H0 ρ' v  τ ρ'2  2π iv– ρ' exp=

W 0  ρ'1 ρ'2  τ* ρ'1  τ ρ'2  μ 0  ρ'2 ρ'1– =

μ 0  ρ'2 ρ'1–  p v  2π iv– ρ'2 ρ'1– exp d2 v=



Manipulating far-field ring-shaped array... 89

(6)

where l = 1, 2, 3, ..., and B = Nl (Nl + 1)Ml /2 is the normalization constant, R is arbitrary
real constant, δ is the effective correlation length, Nl and Ml are the positive integers
used to control the number of the rings and the number of the lobes, respectively,
cosh(x) is the hyperbolic cosine function, and

(7)

In order to obtain far-field distribution that can be adjusted more flexibly, we pro-
pose a new method, i.e., the superposition of the weight functions. In this case, the
weight function p (v) can be expressed as follows

(8)

To realize far-field intensity with adjustable arrays distribution, we select three
parts for weighted superposition. In this case, the expression of p (v) can be reduced as

(9)

where a, b and c are the weighting factors which can be used to control the spectral
intensity of each array, respectively. In this following discussion, parameters a and c
are chosen to be positive and b is chosen to be negative. To satisfy the non-negative
condition, the value of a is always no smaller than the value of b, and the value of M1
and N1 in the weight part of p1(v) is no smaller than the value of M2 and N2 in the weight
part of p2(v), respectively. 

By substituting Eq. (6) into (9), then into (5) and setting the amplitude profile func-
tion τ (ρ' ) as Gaussian profile [25] i.e., 

(10)

where σ0 is the source width. The CSD function of RAGSMA source can be written
as follows

(11)

pl v  2πδ2

B
---------------- 2π2 δ2vx

2 δ2vy
2+ – 2π n2R2– expexp

j 1=

nMl


n 1=

Nl



nR 2π 3 / 2 δ vx αjcos vy αjsin– cosh

nR 2π 3 / 2 δ vx αjsin vy αjcos+ cosh

=

αj
π j

2nM
-----------------=

p v  al pl v 
l 1=

L=

p v  a p1 v  b p2 v  c p3 v + +=

τ ρ' 
ρ' 2

4σ0
2

---------------–
 
 
 

exp=

W 0  x'1 x'2 y'1 y'2   

aW 1
0  x'1 x'2 y'1 y'2    bW 2

0  x'1 x'2 y'1 y'2    cW 3
0  x'1 x'2 y'1 y'2   + +=
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As an example, we will discuss far-field with adjustable ring-shaped arrays distri-
bution. Therefore, we chose each part in Eq. (11) to be ring-shaped arrays distribution,
which can be expressed as [35] 

(12)

Now, let us consider the characteristics produced by the RAGSMA source in the
half-space z > 0. The propagation CSD function in the far-field at two points r1 = r1s1
and r2 = r2s2 has the form [33] 

(13)

where the notation related to the far-field is presented in Fig. 1, and k = 2π/λ is the
wave number, s1 and s2 are unit vectors, θ1 and θ2 are angles made by s1 and s2 in the
positive z-axis,   and

Fig. 1. Illustration of the notation related to the far-field.

W l
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(14)

By substituting Eq. (11) and (12) first into Eq. (14), and then into (13), one can obtain
the CSD function of the far-field generated by the RAGSMA source, and it has the
following form

(15)

where

(16)

where s1x , s1y are the projection of  s1 onto the x- and y-axes, respectively, and s2x ,
s2y are the projection of  s2 onto the x- and y-axes, respectively, and

W̃ 0  f1 f2  1

2π 4
------------------ W 0  ρ'1 ρ'2  i f1 ρ'1 f2 ρ'2+ – d2ρ'1 d2ρ'2exp=
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(17a)

 (17b)

(17c)

Then, the spectral density can be calculated by letting the two points to coincide,
i.e., r1 = r2 = r. After a simple calculation, one can express the spectral density as fol-
lows

(18)

where

(19)

and 

(20)
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3. Numerical simulations

In above sections, the RAGSMA source which can produce and manipulate its ring
-shaped adjustable far-field array has been discussed. Now, let us analyze the distri-
bution of the ring-shaped array in the far-field which is controlled by properly changing
the parameters of the RAGSMA source. The details are as follows: Figure 2 shows
that the spectral intensity of specified rings can be decreased by selecting different val-
ues of a, b, c, and Nl . The spectral intensity shows ring-shaped array distribution with
specified rings decreased, i.e., a ring-shaped array distribution with weaker spectral
intensity in the first ring (see Fig. 2(a)), a ring-shaped array distribution with weaker
spectral intensity in the second ring (see Fig. 2(b)) and a ring-shaped array distribution
with weaker spectral intensity in the first and second rings (see Fig. 2(c)). In other
words, we can decrease the spectral intensity of the ring by properly changing the pa-
rameters a, b, c, and Nl .  

Figure 3 shows the control of the disappearance of specified rings. Here, in order
to make the ring disappear, we have set the parameters M1 = M2 = M3 = 2. As shown
in Fig. 3, by selecting different values of a, b, c, and Nl  the spectral intensity shows
ring-shaped array distribution with specified rings disappeared, i.e., a ring-shaped ar-
ray distribution with the first ring disappeared (see Fig. 3(a)), a ring-shaped array dis-
tribution with the second ring disappeared (see Fig. 3(b)), and a ring-shaped array
distribution with the first and second rings disappeared (see Fig. 3(c)). Therefore, we can
manipulate the disappearance of the ring by properly changing the parameters a, b, c,
and Nl  of the source. 

Figure 4 shows how to manipulate the spectral intensity of part of lobes in the con-
tinuous rings. Here, in order to make the continuous rings, we have set the parameter
M1 = 8. As shown in Fig. 4, by selecting different values of a, b, c, Nl  and M2, the spec-

Fig. 2. Control of spectral intensity of the specified rings in the array. Calculated parameters are set as
follows: R = 1.8, δ = 0.5 mm, σ0 = 0.5 mm, and λ = 632 × 10–9 m. (a) a = 1, N1 = 3, M1 = 2, b = –0.5,
N2 = 1, M2 = 2; (b) a = 1, N1 = 3, M1 = 2, b = –0.5, N2 = 2, M2 = 2, c = 0.5, N3 = 1, M3 = 2; (c) a = 1,
N1 = 3, M1 = 2, b = –0.5, N2 = 2, M2 = 2.
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tral intensity shows ring-shaped array distribution with different spectral intensity of
part of lobes in the continuous rings, i.e., a ring-shaped array distribution with the spec-
tral intensity of part of lobes in each continuous ring being weaker than the others (see
Fig. 4(a)), a ring-shaped array distribution with the spectral intensity of part of lobes
in the first and second continuous rings being weaker than the others with a stronger
third ring (see Fig. 4(b)) and a ring-shaped array distribution with the spectral intensity
of part of lobes in the first and second continuous rings being stronger than the others
with a weaker third ring (see Fig. 4(c)). Thus, we can manipulate the spectral intensity
of part of lobes in the continuous rings by changing the parameters a, b, c, Nl  and Ml
of the source. 

Figure 5 shows that we can control the disappearance of part of the lobes in the
specified rings. Here, in order to make part of the lobes in the specified rings disappear,
we have set the parameters M1 = 2 and M2 = M3 = 1. As shown in Fig. 5, by selecting
different values of a, b, c, and Nl , the spectral intensity shows ring-shaped array dis-

Fig. 3. Control of appearance of the specified rings in the array. Calculated parameters are set as follows:
R = 1.8, δ = 0.5 mm, σ0 = 0.5 mm, and λ = 632 × 10–9 m. (a) a = 1, N1 = 3, M1 = 2, b = –1, N2 = 1,
M2 = 2; (b) a = 1, N1 = 3, M1 = 2, b = –1, N2 = 2, M2 = 2, c = 1, N3 = 1, M3 = 2; (c) a = 1, N1 = 3,
M1 = 2, b = –1, N2 = 2, M2 = 2.

Fig. 4. Change the spectral intensity of part of lobes in the continuous rings. Calculated parameters are
set as follows: R = 1.8, δ = 0.5 mm, σ0 = 0.5 mm, and λ = 632 × 10–9 m. (a) a = 1, N1 = 3, M1 = 8,
b = –1, N2 = 3, M2 = 1; (b) a = 1, N1 = 3, M1 = 8, b = –1, N2 = 2, M2 = 2; (c) a = 1, N1 = 3, M1 = 8, b = 1,
N2 = 2, M2 = 2.
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tribution with part of the lobes in the specified rings disappeared, i.e., a ring-shaped
array distribution with part of the lobes of the first ring disappeared (see Fig. 5(a)),
a ring-shaped array distribution with part of the lobes of the second ring disappeared
(see Fig. 5(b)) and a ring-shaped array distribution with part of the lobes of the first
and second rings disappeared (see Fig. 5(c)). Thus, we can make some lobes of the
ring disappear by properly changing the parameters a, b, c, and Nl . 

Figure 6 shows that we can make some lobes on a particular ring stronger. Here,
in order to avoid the overlap of the lobes, we have set the parameters M1 = 2, M2 = 1
and M3 = 2. As shown in Fig. 6, by selecting different values of a, b, c, and Nl , the
spectral intensity shows ring-shaped array distribution with some lobes on a particular
ring being stronger, i.e., a ring-shaped array distribution with the spectral intensity of
part of the lobes in the first ring being stronger than others (see Fig. 6(a)), a ring-shaped
array distribution that the spectral intensity of part of the lobes in the first and second
rings being stronger than others (see Fig. 6(b)) and a ring-shaped array distribution with

Fig. 5. Control of part of the lobes on the specified rings in the array. Calculated parameters are set as
follows: R = 1.8, δ = 0.5 mm, σ0 = 0.5 mm, and λ = 632 × 10–9 m. (a) a = 1, N1 = 3, M1 = 2, b = –1,
N2 = 1, M2 = 1; (b) a = 1, N1 = 3, M1 = 2, b = –1, N2 = 2, M2 = 1, c = 1, N3 = 1, M3 = 1; (c) a = 1, N1 = 3,
M1 = 2, b = –1, N2 = 2, M2 = 1.

Fig. 6. Control of spectral intensity of several lobes of the specified rings in the array. Calculated param-
eters are set as follows: R = 1.8, δ = 0.5 mm, σ0 = 0.5 mm, and λ = 632 × 10–9 m. (a) a = 1, N1 = 3,
M1 = 2, b = –1, N2 = 1, M2 = 1, c = 1, N3 = 1, M3 = 2; (b) a = 1, N1 = 3, M1 = 2, b = –1, N2 = 2, M2 = 1,
c = 1, N3 = 2, M3 = 2; (c) a = 1, N1 = 3, M1 = 2, b = –1, N2 = 3, M2 = 1, c = 1, N3 = 3, M3 = 2.
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the spectral intensity of part of the lobes in each rings being stronger than others (see
Fig. 6(c)). Therefore, part of the lobes in the specified rings can be stronger by manip-
ulating the parameters a, b, c, and Nl .

4. Conclusions

In conclusion, we have discussed a new source which can generate adjustable distri-
butions in the far-field. We analyzed the adjustable distribution in the far-field by
changing the parameters. It has been shown that the characteristics of far-zone field
spectral intensity, including the decrease of spectral intensity of specified rings, the
disappearance of specified rings, the difference of spectral intensity of part of lobes in
the continuous rings, the disappearance of part of the lobes in specified rings and the
decrease of spectral intensity of some lobes in specified rings, can be manipulated by
adjusting the corresponding parameters of the source. Specifically, the number of rings
can be manipulated by the parameter N, the number of lobes in each ring can be ma-
nipulated by the parameter M, and the intensity of each ring can be adjusted by properly
choosing parameters a, b and c. 
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