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In this paper, we design a parallel-twin convolutional neural network (PT-CNN) deep learning mod-
el and use the signal constellation diagram to realize the identification of six advanced optical mod-
ulation formats (QPSK, 4QAM, 8PSK, 8QAM, 16PSK, 16QAM) and signal-to-noise-ratio (SNR)
estimation. The influence of PT-CNN with different layers and kernel sizes is investigated and the
optimal network model is chosen. Simulation results demonstrate that the proposed method has
the advantages of not requiring manual feature extraction, having the ability to clearly distinguish
the six modulation formats with 100% accuracy when SNR of the received signal sequences is high-
er than 12 dB. In addition, the high-accurate SNR estimation is realized simultaneously without
increasing additional system complexity.
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1. Introduction

Global broadband data services and advanced Internet applications pose great chal-
lenges on the current optical networks. Besides laying more fiber-optic channels or ex-
ploiting denser wavelength multiplexing, some advanced optical modulation formats
with higher spectral efficiency or better noise tolerance have become one of the most
promising solutions for enhancing performance of the existing fiber-optic communi-
cation systems. For example, CHEN et al. [1] showed 56-GB/s/λ C-band DSB IM/DD
PAM-4 40 km SSMF transmission. LI et al. [2] demonstrated a higher tolerance to beat
interference noise by using PSK-manchester modulation format. ZIYADI et al. [3]
achieved optical channel de-aggregator of 30-Gbaud QPSK and 20-Gbaud 8PSK data.
MASATO et al. [4] demonstrated single-channel 15.3 Tbit/s transmission over 150 km by
employing 64QAM coherent Nyquist pulse with a spectral efficiency of  8.3 bit/s/Hz.
CHEN et al. [5] reported a 4 294 967 296 ultra-dense QAM based Y-00 quantum stream
cipher system, which carries a 160 Gb/s 16-QAM signal transmitting over 320 km
standard-single-mode-fiber. Various modulation formats are playing significant role
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in different scenario and link conditions. Future optical networks are expected to have
better adaptation and flexibility to new modulation formats.

At the early stage, it relied on experts to identify the modulation format by observ-
ing parameters of the detected signals. This approach will not be suitable for the ever-
increasing and dynamic service requirements due to its slow response and inaccuracy.
With the development of signal processing algorithms, automatic modulation identi-
fications are proposed. By employing Bayesian decision-theory, likelihood-based
methods were used to construct proper judgment criterion according to the statistical
characteristics of signals [6]. This approach can provide the optimal solution, but can-
not work without the prior knowledge about the actual signal model and channel con-
ditions. Comparatively, the implementation of feature-based modulation classification
is easier [7]. By extracting discriminative features of the received signals, such as spec-
trum features, cumulants and moments, the type of signal modulation formats can be
identified based on the appropriate classifiers. However, hand-crafting features may
not work well in new modulation formats at low signal-to-noise ratio (SNR) conditions.

Recently, data-driven deep learning techniques have been utilized to present supe-
rior results of the automatic modulation format identification for optical communica-
tion systems. For instance, ZHANG et al. [8] reported an identification technique by using
an artificial neural network (ANN) to extract amplitude histogram features. But the
method is effective only for classifying M-QAM signals. In Ref. [9], features extracted
from the received signals’ Stokes space constellations are injected into the deep neural
network (DNN) for modulation format classification. In Ref. [10], modulation formats
were successfully distinguished based on the two-dimensional in-phase quadrature his-
togram features and a convolutional neural network (CNN). However, methods report-
ed in Ref. [9,10] can only identify the modulation formats of polarization division
multiplexing (PDM) signals. In Ref. [11], eye diagram images were input into CNN
for recognizing the different modulation formats. But, eye diagram is highly sensitive
to timing alignment of the received signal sequence, which needs additional hardware
reprocessing units.

In this paper, we design a parallel-twin-CNN (PT-CNN) deep learning model and
use the signal constellation diagram to realize the identification of six modulation for-
mats: QPSK, 4QAM, 8PSK, 8QAM, 16PSK, 16QAM. Compared with the methods
reported above, the proposed method has the advantages of not requiring manual fea-
ture extraction, having the ability to identify the constellation with the same modula-
tion order and achieving the SNR estimation.

2. Operating principle and model structure

2.1. Model structure

The proposed PT-CNN framework for identifying modulation format and estimating
SNR of the received signal is illustrated in Fig. 1.

CNN has been proven to be a very effective model for image processing. For our spe-
cific tasks of signal modulation format identification and SNR estimation, CNNi (i = 1, 2)
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is designed to contain four convolution layers and two fully-connected layers. Each
convolution layer uses a set of kernels with fixed size 3×3 to extract the proper features
from the input image. Batch normalization and ReLU nonlinear activation are added
after each of the convolution layer. The pooling layers are set as the max pooling in order
to keep the most important features. All the pooling layers have the fixed size 2×2 and
strides of  2, so as to reduce the size of feature maps to half. The fully-connected layers
transfer the output of previous layers into the one-dimensional vector. For CNN1, the
dimension of output vector from the last fully-connected layer is set as 6, which is equal
to the types of modulation formats. For CNN2, the dimension of output vector from
the last fully-connected layer is set as 20, so as to consistent with the number of SNR.
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Fig. 1. PT-CNN framework for identifying modulation format and estimating SNR.
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2.2. Datasets 

The constellation diagrams are obtained by mapping both the in-phase (I) components
and quadrature (Q) components of the received signal sequences. Due to both, the am-
plitude and phase information provided, constellation diagrams show more features
compared with eye diagram or amplitude histogram. The resolution of each signal con-
stellation is set as 236×236. Then, the received signal power is normalized to make
its real part and imaginary part in the range of [–10, 10], which prevent the samples
from falling outside the drawing area. In order to eliminate the influence of color and
shape of the scatter points, dot points with fixed size are used and the gray constellation
diagrams (in “png” images) are generated. The datasets come from six types of mod-
ulation formats and each type of the modulation format is generated by 1000 independ-
ent realizations. The additive white Gaussian noise is assumed to interfere in the
transmission channel, which results in the received signals showing different SNR
from –4 to 15 dB with a grid of 1 dB. A total of 6000 samples are obtained, 90% of
which is randomly selected for training, the rest 10% of which is remained for vali-
dating the performance. Each sample is denoted by (x, y1, y2), where x indicates the
constellation image, y1 is the label indicating the modulation format, y2 is the label de-
noting the SNR. Figure 2 shows some of the created constellation images for the six
modulation formats. As the modulation order increases, the cluster of signal symbols
becomes more indistinguishable. 

2.3. Training process

Datasets of  the signal constellation diagrams are injected into CNNi (i = 1, 2) network,
which is respectively offline trained to obtain the optimal parameters according to the
loss and accuracy. Identification of modulation format and estimation of SNR are pro-
cessed simultaneously, each of which is divided into the two steps. In the first step,
the 6000 samples are input into the PT-CNN network and mini-batch gradient descent
are used for the offline training. According to Ref. [11–13], for modulation format iden-
tification based on eye diagram or histogram, the training samples for each type of  mod-
ulation format are usually in the range of 1000–1600. Due to both I and Q components
used, there are more features information in each sample of signal constellation diagrams.
Therefore, 6000 samples are sufficient for offline training to indentify the six modulation
formats in our model. The sparse cross-entropy loss between the predicted outputs and

QPSK 4QAM 8PSK 8QAM 16PSK 16QAM 

Fig. 2. Constellation images of the six modulation formats with some noise.
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target labels are back-propagated to adjust the network parameters. The training step
takes about 20 minutes on Lenovo laptop computer with NVIDA GeForce MX350 GPU.
Accuracies and losses for both the train and validation datasets are monitored. Figure 3
illustrates that accuracy and sparse cross-entropy loss for the training data are improved
continuously as the epochs increasing. But the validation accuracy and loss begin to
deteriorate and the over-fitting begins to appear after 11 epochs.

2.4. Testing results

In the second step, another 1200 samples with the similar but independent distribution
as the train datasets are used to test the performance of the proposed model. Although
the training time is relatively long, the test time for the modulation format identification
is only 5.8 ms for every sample, which is suitable for time-real online processing.

Figure 4 shows the influence of different network schemes on the identification ac-
curacy of all modulation formats. From the comparison results demonstrated in Fig. 4(a),
we can see that the identification accuracy is slightly higher for neural network with
four convolution layers than the one with three convolution layers. In addition, for the
convolution neural network with four layers, Fig. 4(b) illustrates that the identification
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Fig. 3. (a) Accuracies and (b) sparse cross-entropy losses in the training step. 
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Fig. 4. Identification accuracy of all modulation formats for convolution neural network with (a) different
layers and (b) kernel sizes.

(a)
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Fig. 5. Confusion matrices for modulation format identification for various SNRs. 
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accuracy can be further improved if kernel size 3×3 is chosen. The comparison results
in Fig. 4 verify the optimal performance of our CNN1 scheme. 

Confusion matrix is a visual way to show the relation between the predicted results
and the true values. In order to observe the test accuracy of modulation identification,
confusion matrix is shown in Fig. 5. The predicted modulation format is displayed in
each column and its true label is denoted in each row side-by-side. It can be seen that
the identification accuracy of modulation format becomes better as the SNR increases.
When SNR is higher than 12 dB, the accuracy in the confusion matrix is 100% and all
the modulation can be clearly distinguished.

Due to the parallel feature of the proposed PT-CNN network model, CNN2 is
trained and tested simultaneously when the CNN1 is working. Figure 6 shows the cor-
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Fig. 6. Correct rate of the estimated SNR as the SNR varying.
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Fig. 7. Statistics histogram of  SNR estimation for each modulation format.
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rect rate of the estimated SNR at various SNR values. Except for constellation diagrams
with SNR = –2 dB, the risk to misestimate SNR of all the modulation formats is very
low. Figure 7 illustrates the statistics histogram of  SNR estimation for each modulation
format. Result demonstrates that over 80% high-accuracy of  SNR estimation can be
achieved for all the modulation formats within the SNR range [–4 dB, 15 dB].

3. Conclusion

In this paper, PT-CNN deep learning model is proposed to realize both the identification
of six advanced optical modulation formats (QPSK, 4QAM, 8PSK, 8QAM, 16PSK,
16QAM) and the estimation of SNR. By mapping the in-phase (I) components and
quadrature (Q) components of the received signal sequences, constellation diagrams
are generated, pre-processed and used as the inputs to the PT-CNN. Then, PT-CNN is
offline trained to extract the signal features and online tested to verify performance of
the proposed method. Simulation results demonstrate that the accuracy in the confusion
matrix is 100% and the six modulation formats can be clearly distinguished when
SNR of the received signal sequences is higher than 12 dB. In addition, over 80% high
accuracy of SNR estimation is achieved simultaneously without increasing additional
system complexity.
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