
Optica Applicata, Vol. X, No. 2, 1980

Conditions sufficient for a one-dimensional 
unique recovery of the phase under assumption
that the image intensity distributions:

. <*/(*) 2 ,
\f(x)\2 and are known
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It has been shown that the knowledge o f intensity distributions \f(x)\2 and
df(x ) |2 

dx I
in

the image plane, where f (x )  is the complex amplitude distribution, suffices to determine 

uniquely the respective phase distribution. The recovery is then reduced to determining the 

cut-off frequency and stating whether the intensity coming from the spatial frequency spec­
trum at a point coordinate equal to the right-hand cut-off frequency is greater (or less) than 
the intensity at the point o f coordinates equal to the left-hand cut-off frequency.

Introduction
As it is well known the coherent field is described by two magnitudes: amplitude and 
phase comprised in the complex amplitude o f the form

/ 0 )  =  A (.x)exp [/<?(*)] · (1)

I f  the measurement in the image plane involves the square-law detector, only the 

intensity distribution (proportional to the squared modulus o f the complex ampli­
tude) is recorded and thus the phase information gets usually lost. This means that 
i f  no additional information about the form o f f (x )  is available, the knowledge o f 
the amplitude A(x) does not allow to reconstruct the phase distribution y(x). 
A  radical improvement o f the situation occurs i f  it is known a priori that f (x ) is a band- 
limited signal. This assumption enables the recovery o f all distributions o f complex 
amplitude, provided that they are band-limited and have amplitudes equal to A(x) [1]. 
Unfortunately, there exist an infinite number (continuum) o f such distributions. 
The degree o f  nonuniqueness o f phase recovery depends upon the zero-places distri­
butions on the complex plane o f the analytic extension / (z ) o f the complex amplitude 
distribution f{x).

I f  the number o f  zero places in the upper or lower complex half-plane is finite 
the number o f admissible solutions is at most countable. The unique determination 
o f  phase with the accuracy to a linear component a+bx is possible when the upper 
or lower half-plane is free from zero-places [2]. This fact cannot be stated if only 
A\x )  is known. A n  exception presents the case when/ (x ) has only real zero-places. 
However, the class o f complex amplitude distributions, which have only real zero- 
places is narrow [3]. So far, the physically realizable criteria stating wheather / (z)



150 P , KlEDRON

has only real zero places are not known either. Although it is possible to determine 
f(z)’f* (z * )  from A2(x) and next to find whether f(z ) has real zero-places, such a pro­
cedure, however, would require infinite number o f  steps being, therefore, o f  no 
practical importance. A  part from the knowledge o f amplitude distribution 
A (x ) and the fact that / (x ) is band-limited either additional a priori information 
or an additional measurement is only necessary, the latter should restrict the class o f 
admissible complex amplitude distributions that the phase recovery within this class 
be unique. In this way, the knowledge o f  |/(x)|2 and \F(cS)\2, where F(co) is the 
spatial frequency spectrum o f / (x ), suffices to perform a unique phase recovery, i f  
F(co) is an analytic function [4]. The unique recovery o f  the phase is also possible, 
when the intensity distribution is known in the image plane o f a microscopic system 
before and after defocussing this system [5].

The method proposed below assures also a unique phase recovery. Similarly, as 
it is the case in the methods [4, 5] mentioned above, the uniqueness is obtained at the 
expense o f an additional measurement. In this case besides the intensity A2(x) 

df(x)
also

dx
is measured.

Sufficient conditions for unique phase recovery

Let us assume that we are able to realize the operation
dRx)
dx

f i x )  =  (A '(x )+ i<p'(x) A (x )) exp [icp ( x ) ] ,

. In the face o f (1)

(2)
where prime denotes the differentiation with respect to x  variable.

Assume further that the intensity distributions corresponding to |/(x)|2 and 
|/'(x)|2 are known. Then from eqs. (1) and (2) it is possible to determine the 
squared modulus o f  the phase derivative as related to the measurable quantities 

l/ (x )l2 and |/'(x)|2:

\<p'(x)\2 l/ '0 ) l2— ( l/ (* ) f )2 

1/0)12
(3)

However, from (3) the phase cannot be determined uniquely. The determination o f 
I/ '0 )1  only does not allow to conclude whether any change o f sign at the zero-places 
o f  q>(x) has occured. Therefore, i f  there exist n zero-places o f  \<p'(x)\ the function 
<p (x ) may be recovered in 2"+1 variants*. Even if  <p'(x) has no zero-places the two 
following solutions

=  f  \<p'(x)\dx, (4a)

<Pi{X) =  — j  \<p'(x)\dx (4b)

are still undistinguishable.

Thus, in the general case, the knowledge o f both |/(x)|2 and |/'(x)|2 appears to 
be insufficient to a unique determination o f the phase.

* I f  no additional information concerning the *P (x ) distribution is available.
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The situation is radically improved, i f  the assumptions o f the following theorem 
are fulfilled.

Theorem
I f f(x ) is i) a band-limited function o f  known cut-off frequency co0, and ii) the number 
o f zero-places o f the analytic extension o f the functions f (x ) and f '(x )  laying in the 
upper complex half-planes is finite then the system o f equations

I g(x)\ =  1/0)1, 

1/ 0)1 =  |/ '0 )|
(5)

has only one solution (with the accuracy to an exp[i-d\ factor), which has also the 
above properties i), ii). This solution is o f  the form

S O ) = / 0 )ex p [/ -a ]. (6)

P roo f:
Each band-limited function, which has a finite number o f zero-places in the upper 

half-plane, and the amplitude equal to I/O ) I is o f  the form

(7)

n=nk

where is an arbitrary finite subset o f  the set o f the zero-places o f the function 
o f  the complex variable

/ ( z ) =  J° F((o)e2 (8)
-o,0

where F{oS) is the spatial frequency spectrum o f the complex amplitude /0 ) [ 1 ]· 
The asterisk in the formula (7) denotes the complex conjugate. Similarly, each band- 
limited function, which has a finite number o f zeros in the upper half-plane and has 

the amplitude equal to |/'0)l is o f  the form
*

< W  M  =  [ J  · (9)
m—mi

where {wm[} is an arbitrary finite subset o f the set o f zero-places o f  the function

"o
f ’( z ) =  f  2jiiooF(oi)e2niwzdco. ( 10)

- " o
It is well known that when multiplying any function by the Blaschke factor we 

do not change the cut-off frequency co0. Only the non-zero value o f  b in (7) would
b

cause a change o f the cut-off frequency from ± oj0 to ±co0+ - ——. Therefore, we
2 n

assume b =  0 to enable the function f(„k)(x) to fulfil the assumption that the cut-off 
frequency a>0 is known. For the same reasons we put d =  0 in (9).

Assume that there exists such a function g (* )  which fulfills simultaneously the 
asumptions o f  our theorem and eqs. (5). Then there exist also finite subsets
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{ Z„ J  and {wmi} such that

g(x) ==Ank)(x)> (10a)

g'(x) =  d{mi)(x). (10b)

Substituting (10a) into (10b) and next taking advantage o f  (7) and (9) we get the 
following differential equation

n = i i f e  m — rrifc n = n f c

This equation will be fulfilled also across the whole complex plane, owing to the 
fact that each o f  the functions in eqs. (10a, b) may be uniquely extended on the whole 
complex plane preserving the equality sign. As the products in (11) are finite 
equation (11) may be put in the form *

S r » ·
(12)

where Q(z)' is the rational function, i.e. the quotient o f the polynomials. By integrat­
ing both sides o f eq. (12) across an arbitrary circle K surrounding all the poles o f 
the function Q(z) we obtain

1 r  f '(z )  1 r

^ f 7u dz = ̂ f e(z)dz· (13)
K  K

From the residuum theorem <c.f. [6] section 3.11) it follows that the right-hand side 
o f (13) is equal to the finite sum o f residua and thus it will be constant with the incre­
ment o f the radius o f K circle. The left-hand side will be equal to the number o f zeros 
o f  the function f(z ) lying within the circle K  due to the fact that the band-limited 
function has no poles (cf. [6], section 3.4). Since the function f(z), being a band- 
limited function, has an infinite number o f zeros, the left-hand side o f the eq. (13) 
will tend to infinity with the respective increase o f the circle radius. In this way as 
a consequence o f the assumption (10a, b) we get an inconsistance which completes 
the proof o f  the above theorem. This inconsistance will disappear if  the Blaschke 
factors disappear in (7), and consequently in (9). Then, putting c =  a we obtain (6).

It is evident that the theorem will remain true when the functions f(z ) and f\z) 
have the finite numbers o f zero-places in the lower complex half-plane.

A possibility of practical realization
In order to take practical advantage o f the above results it is necessary to have a pos­
sibility o f optical performing o f the derivative f'(z ). It may be realized in such optical 
systems, in which the frequency plane is available for manipulation, i.e. such that

* We assume that /(z) =£ 0 because if it is not case the eqs. (5) have, o f course, a unique 
solution.
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a transparency could be placed in it. Then it will suffice to locate there a transparency 
o f amplitude transmittance proportional to

T(o)) =  2Tiio) · rect (14)

Such a transparency may be, for instance, placed at the exit pupil o f  the micro­
scope objective.

Next problem is to state, whether the reconstructed distribution fulfills the assump­
tions o f  the above theorem.

The assumption o f band-limitedness will be practically satisfied i f  f (x )  is a com­
plex amplitude at the output o f an optical system. It is worth noting, moreover, 
that this assumption is a necessary condition for physical realizability o f the deriv­
ative / '(* ).

The cut-off frequency is either known from the design parameters o f the optical 
systems or it may be measured.

The most difficult problem is to decide whether/(z) and f\z) have a finite number 
o f zeros in the upper half-plane. As i f  has been shown in [7] the sufficient condition 
for / (z ) to have a finite number o f  zeros in the upper half-plane is the following in­
equality

№ o ) ! > i n —«o)l· (15)

The opposite direction o f the inequality means that the number o f zeros o f / (z ) is 
finite but in the lower half-plane. The equality o f terms occurring in (15) gives no 
information about the distribution o f zeros. It is easy to notice that the condition 
(15) assures that / '(z ) has also a finite number o f zeros in the upper half-plane. 
Therefore, i f  we state (by an additional measurement in the frequency plane) that 
either the inequality (15) is true or an opposite inequality takes place, then this 
information suffices to determine the distribution o f zeros for both / (z ) and / '(z ).

Unfortunately, i f  instead o f (15) a respective equality occurs, then the informa­
tion available before the recovery procedure will not allow to distinguish at least 
two solutions o f  f (x )  and f* (x )  which correspond to phase distribution (4a, b). Then 
the distribution F(co) may be modified in such a way that the equality stops to occur.

This may be achieved in two ways:
a) by illuminating the object in the microscope system under certain known angle

[7],
b) by changing the dimensions o f the frequency plane.
O f course, a new complex amplitude distribution /* (x) will be subject to meas­

urement and recovery and f (x )  will be determined first thereafter.
To  make this result o f  practical importance it is necessary to find such a method 

o f recovery, which will distinguish the solutions fulfilling the assumptions o f  our 
theorem from those which do not satisfy them. Such a method will be soon pres­
ented together with computer simulations.

5 — Optica Applicata X/2



154 P. KlEDRON

References

[1] Walther A., Opt. Acta 10, 41 (1962).
[2] Burge R. E., F iddy M. A ., G reenaway A. H., Ross G., Proc. R. Soc. (London), A  350,191-212 

(1976).
[3] Ross G ., F iddy M . A ., Nieto-Vesperinas M ., Wheeler M .W .L., Proc. R. Soc. (London), A  360, 

24-45 (1978).
[4] H uiser A. M ., D renth A . J. J., F erwerda H. A ., Optik 45, 303 (1976).
[5] D renth A. J. J., H uiser A . M . J., Frewerda H. A ., Opt. Acta 22, 615 (1975).
[6] Titchmarsh E. C., The Theory o f Functions, 2-nd ed., Oxford University Press, 1968.
[7] Hoenders B. J., J. Math. Phys. 16, 1719-1725 (1975).

Received, March 7, 1979 
in revised form June 3, 1979

Условия, достаточные для однозначной реконструкции фазы 
из распределений напряжённостей, происходящих от 
комплексной амплитуды и её производной

В работе показано, что знание напряжённостей |/(х)|2 и - достаточно для однознач­
ных

ного установления распределения фазы. Достаточно только определить значение частоты 

среза и установить, является ли напряжённость, происходящая от пространственного спе­
ктра, в точке с координатой, равной правой частоте среза, большей (меньшей), чем напря­
жённости в точке с координатой, равной левой частоте среза.


