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Phase recovery from intensity distributions generated 
by differential operators in one-dimensional coherent 
imaging
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In the paper some examples of differential operators L  are analysed which modify the ampli­
tude o f the band-limited signal f ix )  is such a way that the measurement of intensities \f{x)\2 
and \L[f(x)]\2 assures a unique recovery of the signal. Particular attention is drawn to an 
operator which may be realized by locating transmittance T{oi) =  2Aco+B in the exit pupil 
of the optical system. A simulation of the reconstruction process has been performed by 
applying na algorithm proposed in [10].

Introduction

As it is well known the classical coherent optical field is defined by two quantities: 
amplitude A{x) and phase <f>{x), the combination of which gives the complex ampli­
tude

f(x )  =  A (x) exp [i-cp-(*)]. (1)

So far is optics there exist no method of direct detection of the phase in (1), as all 
the detectors are subject to the square-law detection (i.e. they measure the signal 
intensity proportional to |/(x )|2). However, if an additional information about the 
type of the signal is available the phase information is not entirely lost in detection. 
Knowing, for instance, that f(x )  is a band-limited signal it is possible to determine 
the class of all the band-limited functions giving the same measurement result [1-3]. 
This follows from the fact that the real and imaginary parts of the band-limited 
signals are mutually connected by the Hilbert transform. However, this condition 
does not assure a unique dependence between the phase and the amplitude.

Therefore, for a unique phase determination not only the A(x) distribution should 
be known but an additional information about the measured signal is needed. This 
information can be obtained most conveniently by additional square-law measure­
ments made on some other distribution of the complex amplitude obtained from the 
primary complex amplitude by a known optical transformation. Thus, the problem 
of phase reconstruction may be reduced to finding such an optical operator L, 
for which the following system of functional equations

/(•v)|i =· \g(x)\\  (2a)

|£[/(*)ll2 =  № (* )F  (2b)
will have a unique solution with respect to the unknown function g(x) belonging to 
the class of optically realizable functions. If L  is a linear operator then the unique
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solution of the system (2a,b) means, in reality, a solution determined with the accu­
racy to the constant phase factor exp (/*c). In the further part of this work it is as­
sumed that the class of admissible solutions of the system (2a,b) is the class of 
band-limited functions.

In the papers [4-7] the case of
00

! № ) ]  =  /  A x ) f r M "-dx (3)
— oo

has been examined. Then the system of equations (2a,b) may be interpreted as then 
respective results of the intensity measurements performed in the image (2a) and 
frequency (2b) planes (the latter may be identical with the exit pupil plane). In the 
paper [4] it has been shown that if L [/(*)] is an analytic function (this condition being 
fulfilled in an aberration-free system) then the system (2a,b) has, in general, a unique 
solution. However, in few cases, e.g. when the object f(x )  is symmetric, a two-fold 
ambiguity arises.

The unique solution of equation system (2a,b) has been obtained for the case, 
when f ( x ) is a complex amplitude in the image plane of the microscopic system and 
L  [/(*)] is a complex amplitude in the image given by defocussed version of this 
system [8-11]. Then L  [/(*)] may take the form of an integral operator

00
L[f(x)] = j  f ( x ')h ( x -x ')d x \  (4) 

— 00

where the kernel of this operator is of the form

wo
h(x) =  f e“ w“ e2nia,xd(o. (5)

0
Here, coq denotes the cut-off frequency transmitted by the microscopic system, and 
A is a measure of the system defocussing. In the paper [12] the case is discussed when 
L  is a differential operator d/dx. Then the phase may be recovered up to the sign 
accuracy, i.e. the system (2a,b) has two solutions: /(x)-exp(i'-c), and /*(.*) exp (i-c).

The goal of this paper is to determine such differential operators L, which assure 
a unique phase recovery. Special attention will be paid to the optically realizable 
operators.

Unique phase recovery by using a linear differential operator 
of the first order

Let us assume that an intensity comming from the signal L [/(*)] is determined in 
the second measurement, where

! № ) ]  =  <*(*) ~  + № )/(* ) ,  «0

and a(x), and /?(*) are complex functions. By using the eq. (1) the operator (6) may
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be represented in the following form

L \f(x )]  =  la(x)(AXx)+iA(x)-<p'(x))+li(x(7)

where prime denotes derivative dfd.xx. After simple rearrangements we may show 
that the intensity in the second measurement is expressed by the formula

\L[f(x)]\2 =  \a(x)A (x) |2 | <p'(x) |2+ 2/w (a *(x) · /3 (x)) ̂  2(x) · (p'(x)

+  \a(x)AXx)\2+ \p(x)A (x)\2+2Re(a*(x)-p(x))A(x)A'(x). (8)

The functions: real part, imaginary part and the complex conjugate are denoted by 
Re, Im, and asterisk, respectively. First measurement gives the amplitude A (x), 
thus each signal g(x) which gives the same result as that of the first measurement of 
f(x )  must be of the form

g(x) = A ( x ) ^ (x\  (9)

Let us determine the phase yj(x) necessary for the signal (9) to give the same second 
measurement result as that produced by the signal defined in (1). For this purpose 
it is necessary to know when the eq. (2b) is satisfied. By using (8) and (9) the eq. 
(2b) takes the form

\L[f(x)]\2-\L[g(x)]\2 =  A2(x) (q>'(x)-y'(x)) [|a(x)|2 (<p'(x)+y)'(x))
+ 2  Im(a*(x)-p(x))\. (10)

Obviously, the left hand side of the above equation must be equal to zero for each x. 
Consequently, there must exist two subsets A, B of the set of real numbers R that 
A u  B — R, and that

for x  e A 

for x e B

wx(x) =  A 2 {x)[<p(x)—\p (x)) =  0,

w2(x) — <pXx)+y'(x)+2
Im(a*(x)-p(x))

H x ) \2
=  0.

(11)

(12)

It turns out that if f(x )  and g(x) are band-limited then only one of the cases below 
may occur:

1. R \ A  is at most a discrete set with no condensation point.
2. A is at most a discrete set with no condensation point.
In order to show this property of the set A, it must be first proved that wt (x) is 

a meromorphic function. For this purposes the phase difference cp—'ip is represented 
in the following form

, (̂- )̂ y {x )-x p \x )  =  arctg—- - -  +c(x), 
u{x)

(13)

where v(*) =  Im (f(x) g*(x)), and m(x) =  Re(f(x) g*(x)), c(x) is a piece-wise constant 1

1 The formula (7) is valid outside the points for which A(x) — 0, because then A'(x) and <p(x) 
are undertermined.
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function defined as follows

c(x) =
0 u(x) >  0 and v(x) >  0, 
n u(x) <  0,
v2n u(x) >  0, and v(x) <  0.

The eq. (13) may be differentiated everywhere except for the points, in which u(x) 
or v(x) changes its sign (these points create a discrete set). Then, after multiplying by 
A 1 2(x), the following expression is obtained for w ^x)1:

wt (x)
v' (x)w(x)—v(x) u'(x)

(14)

From the formula (14) it follows that ^ ( x )  is a meromorphic function, because 
u(x), v(x) and A 2(x) are analytical functions2. Hence, if the set A had a condensa­
tion point then wx (x) should be equal to zero everywhere outside the points, in 
which A{x) =  0 [14].

From the properties 1. and 2. of the set A it follows that one of the sets R \ A  
or R \ B  is a discrete set having no condensation points.

If R \ A  is of this form then after dividing wx(x) by A 2(x) the eq. (11) may be 
integrated. At the points which do not belong to A the undetermined constant of 
integrate may have a jump. Then

y>(x) = <p(x)+c i(x), (15)

where c, (x) is a piece-wise constant function having jumps at the points belonging to 
the set R \A .  Since g(x)lf(x) is a meromorphic function, it may be shown that 
the exp [/'•c1(x)] function must be continuous. This means that the difference

lim ct (x)— lim «^(x),

where x0 is a point of discontinuity of the function (x), is a integer multiple of In. 
Therefore, it may be assumed that

Cj (x) =  constant, (15a)

thus, the system (2ab) has a unique solution.
If R \ B  is a discrete set then after integrating the eq. (12) the following relation 

can be obtained
y)(x) = —cp (x) +p (x)+c2 (x), (16)

where

p(x) =
Im (q*(x)-jg(x)) 

|a(x)|2
dx, (17)

1 In the case when u(x) ss 0,the phase difference may be expressed by the function arcctg—■  ̂ , 
but it will not influence the final results.

2 The complex variable functions /(z )  /*(z*) and f(z)-g*(z*) are integral functions of the 
exponential type equal to A2(x) and f(x ) g*(x), respectively, on the real axis.
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and where c2(x) is a piece L-wise constant function having jumps at the points 
belonging to the set R \B .  Hereafter, it is assumed that the functions exp[(p(x)] 
is a meromorphic function. Then, taking advantage of the fact that the function 
exp[—ip(x)]-g(x)lf*(s) is also meromorphic, it may be shown that

c2(x) — constant. (16a)

Finally, it may be stated that the system of eqs. (2a,b) will have a unique solution 
if the function p(x) has such a property that the equality (16), (16a) is not fulfilled 
for any phases y, y  of band-limited signals of the same amplitude. Then the eqs. 
(15), (15a) will be satisfied automatically, thus

g(x) = /(x)exp(/-c). (18)

Below a general condition for p(x) has been formulated, the fulfillment of which 
assures a unique recovery.

Condition 1
If

Jp(x ) Iniax
n

nk

x —z.
(19)

for each real number a and each subsequence nk of the complex number sequence 
{zn} such that the series

m
nk

is convergent for every e >  0, then the measurement of | / | 2 and \L[f]\2 assures that 
unique determination of the signal f(x )  within the class of band-limited functions.

The proof of the above condition will be obvious if the fact that the argument of 
the right hand side of (19) represents all the possible phases by which two signals 
with the same amplitude may differ from each another, is taken into account [1], 
as well as that the convergence of the series (20) determines the position of the zero 
places of the integral functions of order one [14]. However, the Condition 1 is too 
general to construct the function p(x), and next the functions a(x) and /3(x) fulfilling 
(19). Therefore, we will formulate below such conditions for p(x) which allow to 
find the functions a(x) and /?(x), for which the system (2a,b) has a unique solution.

Condition 2

If exp [ip(x)] is a periodic function expandable into Fourier series with an infinite 
number of Fourier-components, then the uniqueness is obtained. Evidently, if

eipM= £ a„e2nicnx, (21)
n

then from the eq. (16) it may be shown that the spectrum of the signal g(x) is given 
by the following formula 6

=  (22)

6 — Optica Applicata X/3
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where F(co) is the spectrum of the signal f(x). If for infinite number of n 
Fourier-components a„ =£0, then G(co) has a unrestricted support, in other words, 
g(x) is not a band-limited signal.

An example: It is easy to verify that if

a(*) =  eto , p(x) =  1, (23)

2
then p(x) =  — cos(<z ‘x). Thus p(x) fulfills the condition mentioned above. 

a
However, the optical realization of an operator

£[/(*)] =  eto -” + /(* ), (24)dx

though possible, is very difficult. Therefore, this case will not be discussed further, 

Condition 3
If p{x) =  a -x2, then the uniqueness is assumed. From eq. (16) it may be shown 

that the spectrum of the signal g(x) may be expressed by the formula

(
_, \ 1/2 «0 .n2 2 2n2i
- j  /  F * (-p )e  "S'" e ~ ml,dit. (25)

The integral in eq. (25) is the Fourier transform of the function of limited support, 
thus G((o) cannot have a limited support.

An example: The operator

L  [/(*)] =  i + axf(x ) (26)
dx

satisfies of the Condition 3. However, the optical realization of such an operator 
seems to be impossible. Therefore, this case will not be discussed either.

Condition 4
We assume that the cut-off frequency m0 of the signal f(x )  is known, i.e. it is known 

that
|F(co)| =  0 for M  >  0)0, (27)

then if p(x) =  2jcax, and if
\a\ >  2a)0 (28)

the system (2a,b) has a unique solution in the class of functions satisfying the con­
dition (27) for the fixed value of co0.

From the eq. (16) it may be shown that

G((o) =  F *(-a)+ d). (29)

Then taking account of (27) and (28) it may be seen that except for the case 
F(oj) =  0, the function G(co) cannot fulfill the condition (27).

An example: Let us assume that a(x) =  —iA/it, (3(x) =  B, where A, B are real
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Then the system (36) may be represented in the form
j - i

Ik(cOj+(D0) - h  F(coi)F*(a)i-coj - (o 0)Tk(col)T*(o)i-coj - (o 0) 
/=1

1
2

h[F((oJ)F*(—a)0)Tk(a)j)T*(—(D0)JrF*(—a)J)F(co0)Tk(w0)T*(—cOj)], (40)

for k  =  1, 2, and j  =  1, . . . ,N .
Let us assume that F(co0) =  F0, and F*(—co0) =  —D/F0 , where F0 is an arbitra­

rily chosen complex number different from zero. In the first step, for j  — 1, the sum 
on the left-hand side of (40) disappears. Then F(a>x) and F*(—cox)  could be calculated 
from the system of eq. (40) if the values F(co0) and F*(—a>0) were known. Instead 
of this the following quantities may be calculated:

X(a>i) - cxF(cox), where cx
F(co0) ’

Y(—a>x) — c2F*(—(o1), where c2 =
D

F0F \ - » 0y

(41)

by inserting F0, and —DjF0 into (40) in the place exact values F(co0) and F*(—oo0). 
Next the values X{cox), and Y{—wj) are substituted to the sume on the left hand-side 
of (40), for h — 2, instead of the values F(cox) and F*(—coj). Considering that 
cxc2 =  1 the sum calculated in this way will have an exact value. Then, the following 
values may be calculated

X(co2) =  c1F(oj2),
* (42)

Y ( - oj2) = c2F ( - (o 2).

This procedure is repeated until j  =  N, which results in two sequences of data

X(a,j) =  i\ Ffixj),

Y(a>,) =  C j F V y ) .

from which F(a>j) may be calculated. It suffices to assume that at some point, say at 
(o„, the phase is equal to zero, in other words, F(con) =  |ir(a)w)|. Since

F(co„) =  V x(m }Y (a>.), (44)

the value of F(con) is known, and we may calculate ct . Next dividing X(o)j) by cx we 
get F(ajj). The algorithm discussed can be used for selected transmittances Tx{t6), 
and T2(co), if the determinant of the system (40) differs from zero in each step. 
This determinant is expressed by the formula

dety =  — h2D -[T1(co)T *(—a)0)T 2((D0) T l ( —a)j)

- T x(u 0)T \{-a> ^T2{a>)Tl{-(D0)]. (45)
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It may be verified that for case discussed this determinant has the following form

det; =  —D A B h3 ·j .  (46)

Thus, the algorithm may find an application when using the method described in the 
previous section.

Simulation of the phase recovery procedure with the help 
of the direct method

The above algorithm was tested for the following distributions of the complex 
amplitude in the frequency plane:

Fx{(o) =  1+2 /,

F2(a)) =  l+2cos2  no),

F3(co) =  exp (/a)2),

Fa (<*>) =  sin ct)3+ /cos [ft) sin eo],

F5(co) =  cos nco+ i sin 7tco3.

It has been assumed that the cut-off frequency co0 == 1, and the filter parameters are: 
A =  0.03, B — 0.8. Such a choice assured the fulfillament of both the uniquenes con­
dition: \B Aa \ >  2ft)0, and normalized transmittance condition: \T2((o)\ <  1,
for [coj +  ft)0. The quantities /i(ft),-+ft)o), I2(coj +ft)0) were calculated directly from 
the formulae (40), for N  =  501. Instead of calculating the derivative (38) the exact 
value of F(a)0), and F*(—co0) were acceptable as the initial values F0 and —D/Fq. 
In this way the normalizing process of X(ojj), and Y(coj) was eliminated. Therefore, 
the results of reconstruction were “exact”, i.e. the undetermined phase factor exp (i-c) 
was equal to unity. Such an approach facillitated the interpretation of the results 
and calculation of errors.

For the cases F1—F5 r.m.s. errors were not greater than 10~4%. The errors were 
calculated from the formula

N  N

e =  [ 2  \F(<a,)-F'(<Oj)\ 1 /JTIFC®,)!2] 1''2 100%, (47) 
y-1 y-1

where F r(ai}) is the recovered value of the function F(a>) at the point o)}.
Also the recovery error of the real part was estimated at the point w} by using the 

formula

Re(ej)
\ReF(cof)-ReF\coj)\

\ReF(a)j)\
•100%. (48)

The error of the imaginary part Im (ey) was calculated similarly. In this case the real

1 All the calculations were made on a Odra 1305 computer in Fortran 1900, by using the single­
precision procedure.
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parts in the formula (48) ought to be replaced by the imaginary parts. In fig. 1 the 
errors Re(Sj) at the consecutive points coj(a>j > coj+ i) are presented in a logarithmic 
scale, the graph of Re F(co) being shown in a linear scale, for the case of Fs. For the 
other cases as well as for the errors Im (e ) the dependences were similar. However,

it has been noted that e increases with the increase of N. It happens that this algorithm 
cumulates the errors due to rounding the data by the computer which results in 
increasing of Re{s}), and Im(ej) in subsequent steps. There are some complex amplitu­
de distributions, in which the errors cumulate very quickly. For instance for

and for
F6(<o) =  l+2sin2^o>, e — 30%,

F7(eo) =  cosl07cft) +  i sin (a>2+  1), e =  2%.

This cumulation is distinctly seen in figs. 2 and 3, where the relations Re{ej) and 
Re F((o) are shown for F6 and F7, respectively. From the graphs it follows that at 
each 6 steps on average the errors increase by one order of magnitude. It has been 
also stated that the errors of reconstruction depend weakly on the values A, and B 
and also that these errors do not depend on the form of the function T2((o). For 
instance, for T2(a>) — exp(ico2) or T2(co) =  exp(/cos2a>) the errors for the func­
tions 1-5 were also small, while for the functions 6-7 they were great but by one or 
one half order of magnitude smaller than for the discussed differential operator.

Summarizing remarks

A unique recovery of the phase is possible if a measurement of the respective two 
intensity distributions is made. If the signal measured in the second measurement 
is obtained by the differentiation and addition operators the signal measured in the
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Fig. 3

first measurement according to (26), then uniqueness of the phase reconstruction may 
be assured in several ways (Conditions 2, 3, 4). The operator (31) seems to be of the 
greatest importance due to its easy realization. It sufficed to insert a transparency of 
transmittance T{<x>) = 2Aco+B (provided that \B /A  | >  2co0) in the frequency 
plane before the second measurement. It seems that in the microscopy of coherent 
light the suggested method may be used as the first step to the complete reconstruc­
tion of the microscopic objects. This method is not restricted to signals of weak 
phase, but may be applied to arbitrary microscopic objects. However, the application 
of the algorithm described in the section The phase reconstruction by solving the 
system o f integral equation (direct method) gives sometimes results suffering from
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great error. Therefore, it seems that some further efforts should be used to find an 
algorithm, enabling the solution of the system (35) and having no shortcomings of 
the direct method.
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Реконструкция фазы из распределений интенсивностей, 
происходящих от двух комплексных амплитудь полученных 
с помощью дифференциальных операторов в однородном случае

В работе даны примеры дифференциальных операторов L, которые модифицируют ампли­
туду полосно-ограниченного сигнала f ( x ) таким образом, что измерение интенсивностей 
I f (x )2 и | L [f{x j\ |2 обеспечивает однозначную реконструкцию сигнала f(x ). Подробно иссле­
дован оператор, который может осуществляться посредством помещения в выходном зрачке 
оптической системы трансмитации Т(со) =  2Аш+В. Приведеба имитация процесса рекон­
струкции при применении предлагаемого алгоритма в работе [10].


