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A threshold analysis is presented for circular grating distributed feedback (CG-DPB) and circular 
grating distributed Bragg reflector (CG-DBR) lasers with additional phase shift introduced in the 
grating region. It is found that proper value and position of the additional phase shift reduce 
threshold gain o f the laser structure and also improve its mode selectivity.

1. Introduction

Surface-emitting circuiar grating distributed feedback (CG-DFB) and Bragg reflector 
(CG-DBR) iasers have received much attention in the past years [l]-[28]. These iasers 
are of interest primariiy because they can deiiver high-power, iow-divergence circuiar 
beams. Moreover, in piane tight propagation faciiitates monoiithic integration of the 
various grating and active eiements to form functionai and highiy compact coherent 
tight sources, as weii as two-dimensionai iaser arrays.

The curved-iine gratings as resonators and reflectors were initiaiiy suggested by 
TlEN [1]. Next, ZAHENG [2] appiied circuiar gratings as two-dimensionai resonators. 
SlHNO e/ a/. [3] and HORI e/ a/. [4] designed and fabricated focusing grating mirror. 
Shimpe patented cyiindricai diffraction grating coupiers and distributed feedback 
resonators [5]. Circuiar gratings couid be used in ieak-wave antenna [6], which when 
combined with active materiais, wouid be a new type of surface-emitting iasers.

Circuiar grating couid aiso serve as a muitipart directional coupier [7], [8], which 
might be especiaiiy usefui in muitichannei operation, in addition to circuiar gratings, 
eiiiptic Bragg gratings have been aiso proposed by SUDBO [9] for appiication in 
integrated optics.

The first optically pumped surface-emitting CG-DFB iaser was demonstrated 
in i991 [10]. in this case the second-order grating for both opticai feedback and
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outcoupting was used. Simitar cavity configuration was appiied in opticaHy pumped 
[11], [12] and electricalty pumped [13]-[17] CG-DFB and CG-DBR lasers. More 
recently, an electrically pumped CG-DBR laser with an integrated outcoupler has been 
developed [ 18 ]-[2 1 ]. This laser consists of a central first order-grating DBR resonator 
surrounded by independent chirp outcoupting grating which focuses emitting light 
(or shapes required pattern of the output light beam).

Simultaneously, a theoretical analysis of the properties of circular grating devices 
has been carried out [22]-[29]. In particular, a detailed, vector-wave formulation of 
self-consistent coupled-wave theory for circular waves, applicable to both passive and 
active circular grating devices formed on dielectric waveguides, has been 
provided [25]. It has been shown that for gratings having cylindrical symmetry, only 
circular waves o f the same order are coupled. Moreover, for zero-order cylindrical 
waves, pure TE-TE (or TM-TM) wave coupling occurs and for higher order waves, 
there is coupling between TE and TM modes. The threshold analysis [27] has shown 
that CG-DFB lasers normally have a higher threshold gain than CG-DBR lasers. 
Moreover, by a proper choice of the inner grating radius it is possible to select cither 
even or odd waves.

More recently, an analysis of the above-threshold operation of CG-DFB laser has 
been reported [30]. Non-linear scalar coupled-mode equations taking into account gain 
saturation effect, but including only radial field distribution o f the laser mode, have 
been solved numerically with a fourth order Runge-Kutta algorithm. The non-linear 
model of CG-BFB laser has been extended to take into account the coupling between 
partial waves, characteristic for the second order grating, and the effect o f the power 
mode nonorthogonality [31].

Recently, an approximate method for analysing the non-linear operation of circular 
DBR laser has been developed [32]. This method is based upon vector-wave 
self-consistent coupled mode equations and includes a three-dimensional spatial field 
dependence o f the laser modes. With the help of the energy theorem an the threshold 
field approximation an approximate formula relating small signal gain to the output 
power and laser parameters has been derived. Using this formula it is possible to 
investigate an influence o f the real system parameters (eg ., distributed losses, coupling 
strength of the grating, geometry of the resonator, ere.) on maximal power efficiency 
of the laser structure.

Much effort has also been focused on the mode discrimination [22], [29] in 
CG DFB/DBR laser structures. In particular, fundamental mode operation could be 
obtained [22] when the periodicity and the position of the grating arc chosen in such 
a way that all of the reflections from each refractive index step are superimposed in 
phase, so as to be self-consistent with the resonant behaviour of the fundamental wave. 
Another method of the mode selectivity has been proposed in [29]. It has been shown 
that a small perturbation introduced into the complex constant o f the active region 
causes the suppression o f the unwanted lateral modes of odd symmetry. Very recently, 
effects of radiation loss in second order circular grating DFB lasers have been studied 
[35], [36]. It has been shown that for sufficiently strong coupling radiative losses
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improve mode selectivity [35]. Moreover, it was found that device and pump-beam 
parameters can have a significant effect on the threshoid gains of the iaser, as weti as 
on the azimuthai mode discrimination and tota) iasing iinewidth it exhibits [36].

In this paper, we investigate the effect of an additionai phase shift introduced into 
the grating region on threshoid gain and mode spectrum in DFB/DBR iaser having 
circuiar grating. In genera), it is a weii estabiished fact that in iinear DFB 
iaser structures the AV4 grating shift provides a singie mode operation at Bragg 
frequency [33]. However, in the case of circuiar grating DFB and DBR iasers the 
situation is more compiex. We show that the additionai phase shift can improve mode 
seiectivity and decrease the threshoid gain of the fundamentai DFB (DBR) mode, but 
its optima] vaiue and the position in the grating region strongiy depend on the other 
iaser parameters. Especiaiiy, the optima) vaiue of the phase shift introduced is sensitive 
to the grating phase measuring the grating position with respect to the centra] point of 
the iaser structure.

In the next section, coupied mode equations for CG-DFB/DBR iaser structures 
with additionai phase shift introduced are derived. In Section 3, threshoid conditions 
for these iasers are formuiated. The threshoid characteristics for distributed feedback 
as weii as Bragg reflector iasers reveaiing the influence of the additionai phase shift 
on mode spectrum are discussed in Section 4. In the iast section conciusions arc drawn.

2. Coupied mode-equations for TE-circuiar waves

In circuiar grating devices, the propagation waves are inward and outward propagating 
cyiindricai waves described by Hankei functions. According to the detaiied vector- 
wave formuiation of a seif-consistent coupied-wave theory for cyiindricai waves [25] 
the coupied-mode equations can be written in the foitowing form:

U"<7
dr

2n co

2n oo

0 —OO

j  J rd e d z j SoAs ^  a !S '(r )
0 —00 <7, i, "i

"1*----- -—
s + As (!)

where m is the optica) frequency of tight, Eg-the permittivity of vacuum, E -  the reiative 
permittivity of an idea) pianar waveguide, and As -  the perturbation introduced by gain 
in the active region and by the circuiar grating in the Bragg reflector region. The E are 
the eiectric fieid components o f the cyiindricai wave in the idea) pianar waveguide and 

are siow varying mode ampiitudes resuiting from perturbation of the idea) 
waveguide. The subscript r  denotes the r-th component of the fieid and the transverse 
6- andz- components are denoted by t. In Equation (1) the subscript p  (or s) represents
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the outward cylindrical waves when p  = + (or s = +) and in-ward propagating 
waves when p  = -  ( o r j  = - ) .  The poiarizationTE or T M ofthe waveguide modes 
is denoted by subscripts o  or r, respeciveiy. The subscripts v and p are the modal 
numbers of planar waveguide modes associated with the order of the cylindrical waves 
denoted by n or w (integral numbers), and <y denotes an order o f the DFB/DBR modes 
("longitudinal" modes). The factor p  on the left-hand side of relation (I) corresponds 
either to "+" for out-ward propagating cylindrical waves or to for in-ward 
propagating waves. The asterisk in (I) represents the complex conjugate. According 
to [25] the field distributions of TE cylindrical modes of unperturbed planar 
waveguide are

c-(p)TE _ ^

¿fr'unr
(P^"

P " TE 2

MTE y^Eo d ^ ' ( p j ^ r )  TE  T.e
" 1^*1— d7—  ^
(P i ) ^

,(^)TE 7 M P o  -(p)TE
P " TF 2

< p ! )

ITyMTE ^  (^)TE
' 'u n r  ^P" TF 2

( P i )

d ^ ( p i ' r )  d Z ^ (z )

T^MTE _ MTE

P

y'u

dr

TF 2 M
(P i )

^r(Pr )̂

dz

d Z ^ (z )
dz

_/n0

(2a)

(2b)

(2c)

(2d)

(2e)

where po is the permeability, is the Held amplitude, Z ^ (z )  are the slab
modes having propagation constant p ^  (solutions for slab waveguides and 
dispersion relations for calculating p^„ can be found in standard text books, see, for
example, [33]), radial distributions for outward-propagating modes and inward 
-propagating modes are described by

4 (̂Pi )̂ " W r )  = ^ ( P i ^ ) - y ^ ( P i ^ )
and

4 " \ p i ^ )  = / / ! , ' b i ^ )  = ^ ( P i^ ) + y W „ ( p i 'r ) ,

respectively, where N and are the Hankcl functions of the first and second 
kind, respectively, Z„ is the u-th order Bessel function of the first kind and 7V„ is the 
n-th order Neumann function.

We assume, similarly as in [25], [32], the small perturbation with A s /( s  + Ac) « I 
and neglect intcrpolarization coupling, which is a consequence of the long radius 
approximation especially valid for DBR structure [32]. Moreover, we confine our 
analysis to the structures having grating of cylindrical symmetry,
As (r, 6, z) = As (r, z ) , in which only coupling between the cylindrical waves of the
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same order occurs. Under these assumptions, with normaiised fietd distribution (2) in 
such a way that

2n os
f f -Kf)a -K/>)o* -)(p)c*
j jr d e d z [E ^  x / / ^ ] r  = 1,

0  - 0 0

which resuits in bf TEp
F "l

TF 2(Pi)
Sono]*

I T F I 2  Z. dz
the coupied mode Equations (!) can be

rewritten for TE modes in the foitowing form:
J  ( + )TE y g  y g  y g  y g

< ^TETEy . r  7(Pg -Pv  )** (+)TE ..  , . n  2(P^ +Pv (-)TE '

d a

F" 
dr
(-)TE 
F"__

-  - / M r i r ) + y ( - ! ) 'V

=  (^)dr
.y , . / !  ^ / ( p r  + p r ) ' '  (+)TE , - y ( P ^ - P r ) '*  (-)TE(-)T El

^vn j  (^)

where the coupling coefficient is given by

j* Ae(r,z)Z^ dz

1 /pTËlÏT^ / [ TF] ] YF)
2VPF Pv J j  ¡Z ^ jd z j  [Z ^ d z

(4)

Next, assuming that circuiar grating is fabricated on a singie-mode pianar 
waveguide, the coupied-wave equations for TE-cyiindrica) waves (Eq. 4) are:

U Nd a l
= -^ f(r )[a ^ (r )  + y (- l)  V ' a ^ ( r ) ] , ̂ /2pr (-)y

dr

^  = ^ ( r ) H ' ( - ! )  V ^ ( r )  + a ^ ( r ) ]  (5)

TFTF TF TF
where the coupiing coefficient given by Eqs. (3) with p^ * Pv "  P-

In the next section, we use reiations (5) as a starting point for threshoid anaiysis 
o f CG-DFB/DBR iasers with the phase shift. In Section 4, threshold conditions for 
these laser structures are formulated.

3. Eigenvalue equation for circuiar grating iasers with phase shift

We consider a laser structure such as shown schematically in Fig. 1. The device is 
composed o f a uniform central region of radius 7?, and surrounding grating region 
A, < r < A3, where ^  is the outer radius of the circular grating. The phase shift of the 
grating in introduced at r  = ^  In the case of CG-DFB laser, the active medium 
extends over the whole grating region. In the case of CG-DBR laser, the active material 
is limited within the central region of radius A, and the grating region is passive.
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Fig. !. Diagram o f circular grating (CG) iaser with phase shift introduced: schematic view (a), and 
cross-sections (b .c).

The cross-section of the CG-iaser is depicted in Fig. 2, where without toss of 
generality, the circuiar grating is assumed to have a rectanguiar profiic. The !ine 
spacing of the grating is denoted by fF,, the iine width by ¡T̂ , and the grating period 
by A (A = fF, + ^ ) .

The eigenvalue equations for CG lasers can be derived by solving Eqs. (5) with 
specific boundary conditions. First, we should find the coupling coefficient Ai(r). Since 
a CG laser is composed of a central region (active medium-uniform waveguide) and 
a grating region, the equivalent unperturbed waveguide for these two regions should 
be different. Thus, in our approach we choose the unperturbed waveguides for central 
region and the grating region as two different waveguides. When the phase shift is 
introduced into the grating region it can be easily shown that the coupling coefficient 
for CG-DBR structure can be written in the following form:

A i ( r ) = j a ,  for 0 < r < A , ,  (6a)

A (r) = yot2-  ^  for R [< r-< A 2  ̂ (6b)
/H=—00

' AT ^^ ( r )  =JC t2-  2^  2 ^  e for T?2 < '* < ^ '3' (6c)
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Fig.2.ModespectrumofCG-DFBIaserwithA^/?2 " *0- 77 " !/4. and(O,<j))equa](0,n).

The gain in the centrai region ( 0 < r  <./?,) and the ioss in the grating region 
(7?, < r  < 7? )̂ are denoted by a , and a 2, respectiveiy. In the case of CG DFB structure 
a  = a ,  = ^2 denotes gain, and 7?, = r. The is the w-th order coupiing 
coefficient of the grating, G„, is a phase constant (describing the position of the grating 
with respect to the centre o f the structure), and <}) denotes the phase shift introduced 
into the grating region at r  = 7?2-

3.1. Solution for 0 < r < 7?
By substituting Eq. (6a) into Eq. (5), the coupied mode equations for 0 < r  < 7?, become:

dir (+)
(+) H / 2 p r  ( - ) ,

dr
= ^ ( r ) + y ( - l ) " e -  a ) / ( r ) ] ,

da (-)
n -y2Pr (+) (-E

dr
= - a , H ' ( - ! )  " ^ ^ ' a ,  (r) + a^ '( r) ]

(7)
where p is the propagation constant of the unperturbed waveguide for the centra! region 
and a  are the ampiitudes of the counter-running cyiindricat waves of the "longitudinal" 
laser modes. Neglecting the fast oscillating terms in Eqs. (7) and solving the resulting 
equations, we get

4 % )  =  ^ ( 0 ) c " " ,
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4  =  4  \ 0 ) g

which can be expressed in the matrix form in the foHowing way:

4 ^ ( r ) I!

a ,r
g ' 0 a ^ ( 0)

a ^ ( r ) -a ,r
[o g 'J a ^ ( 0)

0 < r < R ,. (8)

3.2. Solution for R, < r <

For the first grating region, R, < r  < R^, substituting Eq. (6b) into Eqs. (5), we have

d a (+)

dr

+ °° (2!t)
^  2<t<

da (-)

dr

m = -oo 

+oo

[ a ^ )  + y '( - l ) " g " ^ a ^ ( r ) ] ,

^ 2-  X  ^
2n

H ( - i ) V ^ ( r )  + a ^ ( r ) ]  (9)

where p is the propagation constant o f the unperturbed waveguide for the grating 
region. Let 5 denotes the deviation from the Bragg frequency, 8 = p - w n / A .  If 
¡8 « il, then oniy the resonant terms are important. By negiecting the fast osciitating 
terms in Eqs. (9), the coupted mode equations can be written as:

da (+)
(+)

dr
(-)

= a X  ^ ( r ) - ( - l ) " R „ e ^  g/2 5 r /(Q ,n + <)))(-)
a^ ^(r),

da
dr

= - a 2a y ( r ) - ( - l ) " R ^ ,g - ^  gy 2 S r ^ (n ^ -^ -)  (+)
<  ' ( r ) .

The soiution of Eqs. (10) can be obtained in the foHowing matrix form: 

r 'n M  4 (r)a ^ (^ * )

a ^ ( r )

____
t

a ^ ( R , )

^ 2^ )J L 4 ^ ,)
where the matrix eiements are defined by:

y8(r-.R ,)

, R. < r  < R2'

(10)

( " )

c o s h [y ,( r -R ,) ]  + ^ - 4 -  s in h [y ,( r -R ,) ]

^ .2 (^ ) =  ^  ^
a^, y(n^, + <t.) y5(r + R,)

Y,

s in h [y ,( r -R ,) ] ,

^2,M = ^  ^
Y,

a^, -y5 (r-R ,)
s in h [y ,( r -R ,) ] ,

( 12a)

( 12b)

(12c)
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' -y8(r-.R,)f Otn-/8
722(r) = <? jc o s h [y ,( r -7 ? ,) ] -----—  s m h [y ,( r -7 ? ,) ]k  (!2d)

and the complex propagation constant is given by 

y, = ^ e ^  + (/'8 - a 2f ,  a^, = - ( - 1)"^ „ .

3.3. Soiution for < r < 7?̂

For the second grating region, the couptcd mode equations are obtained by substituting 
Eq. (6c) into Eqs. (5) and neglecting the fast oscillating terms. As a result we have

A+)d a l (+)
dr

da (-)

dr
^ r /2 S r - /(n ^ + <{))(+).

(13)

Similarly to the former case, the solutions of Eqs. (13) can be written in the following 
matrix form:

4^(r)
4 * 4 )

7 n ( r )

where the matrix elements 7^„(r) for this grating region are:

4 4 * 2 )
(14)

" y8(r-/t,)t a , -/'8
r „ ( r )  = c  ̂ cosh[y2( r - ^ ) ]  + - ^ -  sinh[y2(r-7?2)]

^  7 ( 0 ^ y8(r + /?2) .
^ !2(^ ) =  ---- ^

Y2

Y2

sinh[y2(r-7?2)],

" a^, ^/(n ,̂ + <))) ^/8(r + ^ )
* 2 . ^ )  =  "* ' s i n h ^ ^ - ^ ) ] ,

Y2

" ^/8(r-Æ,)f a , -/'8 1
^ 22(^) = ^ 1 cosh[y2(r-7?2)]-----------smh[y2( r - / ? 2)] k

Y2

(15a)

(15b)

(15c)

(15d)

with y2 =

3.4. Threshold conditions

To End threshold conditions, we must relate waves in the central region to those in the 
grating region by applying proper boundary conditions. Note that these two regions
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form two different waveguides. However, simiiar to the case of one-dimensionai 
waveguide discontinuities, by matching the eiectricat and magnetic fieids of the centra! 
region with those of the grating region at r = 7?,, it is not difficult to show that in our 
case, the discontinuity can be described by

4 4 * , )

4 4 * , )

^/(P-P)R,

0

0

[ v(P-P)R,
4 4 * , )

4 4 * , )
( t 6 )

where Cg is the power coupling efficiency between the centra! region and the grating 
region given by

4PP f Z(z)Z (z)dz
2

(P + P ) \ *IZ(z)l'dz

with Z and Z being the stab mode distributions in two regions, respectively. 
Then, taking into account Eq. (8) and (!7) we have:

(!7)

sif'W
/ p r  " i ^ i  -v(P-P)/?]

VON s

0

0

jtP-P)/?,
4 4 o )

4^(0)
( ! 8)

Next, we assume that the phase shift in the grating regions, introduced at r = /?2> 
is sma!! enough, so that it does not perturb the field continuity. Thus, the amplitudes 
o f the cylindrical waves at r = 7?2 can be found to be

4 ,  (* 2) 4z(*z) 4 4 * , )

4 ,  (* 2) *22^*2) 4 ^ (* ,)

and at r  =

4 ' \ * 3 ) 4 4 * 3) 42(*3) 4 ' \ * 2 )

4 ^ ( * s ) 4 ,( * 3 ) 4 z (* 3 ) 4 * ^ * 2)

(20 )
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Then from Eqs. (18)-(20) we obtain

36)

4 ^ )

4 ^ (^ )

^ / ( P - P ) R ,  7 1 2 ( ^ 3 )  -Ct,/?, y ( p - p ) H ,

7̂ 2, ( 7 ? 3 ) ^  ' '2
a , ^ ,  - v ( P - P ) ^ t  ^ 2 2 ( ^ 3 )  - a , R ,  y ( p - P ) / ? ,

where the matrix È is defined by

rt.(7?3) T,2(7?3)
7̂ 2. (7?3) Ê22(7?3)

^ , ( ^ 3) 7^„(T?3)

7 ^ 3 )  4 ( ^ 3 )

7 ^

r ' , , ( 7?2) r , 2 (T?2)

^ 2 ](^ 2 )  ^ 2( ^ 2)

4^(0)
, (2i)

(22)

We assume that there is no reflection at the end of the taser structure r = R3, then 
in order to create seif-sustained osciiiations, the ratio of the ampiitude of the 
incoming-wave to that of the outgoing-wave must be zero at the boundary, 7.e.,

4 ^ 3 )
4 ^ 3 )

0 . (23)

This condition is identica) to that of one-dimensionai DFB iaser [35]. Thus, from 
Eqs. (2 i ) and (22) we obtain the eigenvaiue equation of circuiar grating iaser with the 
phase shift in the foiiowing form:

4 ^ ( 0 ) Ê 2 , ( 7 ? 3 ) ^ Q c  

or in another form 

C,

a,R,-V(P-P)R, ^ 22( ^ 3) -a ,R ,+ y (p -p )R ,
+ <  10)

0̂
r 4 ^ ( 0 ) i '  Î2.(T?3)"

L 4 " \0 ) J . ^ 2( ^ 3).

^ /2 ( P - P ) R ,  2 ot,H, 
e e 1.

= 0, (24)

(25)

Note that from Eqs. (19), (20), (22) and (23), we aiso have

7 M 7 ?3 )4 ^ 7 ? ,)  + È22(7?3)4"\7?,) -  0, 
or

7̂ 2) (7?3)4 * ^ , )

4 ^ , )  Î22(T?3)'

Now, deEning the reflection coefficient at r  = 0

(26)

( 2 7 )

(+) m i
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and the effective coefficient of the grating seen from r  = R,, outwards as:

7 2 ,( 7 ? 3 ) /n
PR, = 7771------" = " ---------" (29)

^ 22( ^ 3)

Then, the threshoid conditions, Eq. (25) can be written in the foitowing form:

C o P o P R , ^ '" '^  = L (30)

with Q denoting the phase shift resuiting from the waveguide discontinuity at r = Rt 
between active and grating region) and from the grating shape

Q = Q „ + 2 ( p - p ) R ,  = ^  ( I f ,+ 2 R ,)  + 2 ( p - p ) R , . (3!)

Equation (31) is simiiar to the eigenvaiue equation for conventiona) DBR iaser with 
one perfect mirror [20]. In fact, because the fieid must be finite at r = 0, we have to 
require

4 ^ ( 0  =  4 " \ 0 ) , (32)

/ e., Po = 1. It is aiso worth noting that the reflection coefficient of the circuiar 
grating depends on the order of cyiindrica) waves. This can be evidenced by 
substituting Î 2] and 7^2, described by Eqs. (12), (15) and (22), into Eq. (29) to obtain 
the expiicite grating reflection coefficient as

PR, =
/t + R

' C + D

where:

, ^  + -i/8(R,+R^) .
^  =  — e e

Y2
sinh [72( ^ 3- ^ ) ]

x j cosh[y,(R3-R2)] + ^y^ s in h [y , (R 3 -R 2 ) ]

(33)

n ^  i/6(2R,-R^ + R,) .
R  =  — e g

Y]
sinh[y,(R3- R ,) ]

x <{ cosh( [y2(R^ - R 2) ] - ^ y - ^ s in h [ y 2(R3 - R 2)]

a .
C = — sinh[y ,(R 3-R ,)]sinh [y2(R 3-R 2)]. 

Y]Y2
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D = g

The dependence on the order of cytindricat waves is represented by the factor 
ot^ = (-1 )"  appearing in Eq. (32). Note that ati even (or odd) waves are degenerate, 
/ g., they have the same threshoid. The degeneracy among the even (odd) order 
cytindricat waves is a direct resutt o f the targe radius approximation for the Hanket 
functions. From physicat argument, tower order waves shoutd have a tower threshotd, 
since the optica) fietds of the tower order waves show a better interaction with the 
active medium compared to the higher order ones. Recentty, it has atso been shown 
that gain saturation effect (characteristic for the taser operation above the threshotd) 
remove [32] mode degeneracy between the cytindricat waves and fundamenta) 
cytindricat mode is preferabte by taser structure. Moreover, in the case of the second 
order grating, for sufficient by strong coupting, radiative tosses break the 
"tongitudinat" mode symmetry improving mode setectivity [35].

4. Threshotd gain of phase shift circutar grating DFB/DBR tasers

In this section we present a systematic study o f threshotd gain and mode spectrum of 
circutar grating tasers with additionat phase shift introduced in the grating region. We 
confine our anatysis to the first order grating resonator. Such a geometry of the 
structure is characteristics of CG-DFB/DBR tasers with integrated outcoupter. In these 
tasers, the first order grating resonator is surrounded by independent chirped 
outcoupting grating which focuses emitting tight. On the other hand, the resutts 
presented here woutd provide a tower bound for second-order grating devices, since 
radiation effect teading to higher threshotd is omitted. For the sake o f convenience, 
we denote the position o f the additionat phase shift <j) introduced by 
D = ^ /(^ 3  the ratio o f the active medium tength to the grating tength by
R = .R ,/(7?3- .R ,)  and the tength o fthe grating by T = R3- R , .

4.f. Mode spectrum and threshold gain for CG-BFB lasers with phase shift

In the case o f DFB tasers, as the active medium extends under the grating region, 
w eessentiattyhave a ,  = 0̂  = a ,  p = p ,a n d  Cg -  1 .

In Figures 2-5 the normatized threshotd gain aR^ is ptotted against the normatized 
frequency deviation 8R3 for O = 0, and phase shift <)) = n introduced and various 
position D = 1/4, 1/3, 2/3 and 3/4, respectivety. The asterisk and the circtes represent 
the even and odd cytindricat modes, respectivety. The catenation is done for 

= 1. It is seen that threshotd gain as wett as mode setectivity (fe ., the difference
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Fig. 3. Normaiized small threshold gain versus normalized frequency parameter 8/?  ̂ for CG-DFB 
laser with /f„,/?2 = 1.0, D  = 1 /3  and (Q, <})) equal (O.rt).

Fig. 4. Mode spectrum o f CG-DFB laser with Â /?2 = * 0- ^  " 2 /3  and (Q, ijt) equal (0, n)
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Fig. 5. Normalized sniati threshold gain as a function o f normalized frequency parameter 8 ^  for 
CG-DFB laser with = 1.0. D = 3 /4  and (D, <))) equal (0,tt).

Fig. 6. Dependence of normalized threshold gain on normalized frequency parameter 8 ^  for
CG-DFB laser with ^ ' 0- D = 1 /4  and (Q, ij)) equal (0,2n).
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between the threshoid gain for the fundamentai and next order DFB mode) strongiy 
depend on the position and vatue of the additionai phase shift. Moreover, the seiectivity 
of the iaser structure can be remarkabty improved in comparison to the uniform grating 
cavity. However, the proper choice of <}) strongiy depends of the position of grating 
with respect to the centra) point of the structure, measured by the phase O. Particuiariy, 
for the parameters presented in Figs. 2-5, the iowest threshotd and the best mode 
seiectivity are obtained when the phase shift is introduced at D = 1 /4  and D = 3 /4 ,  
f.e. a quarter grating iength from the beginning and from the end of the grating, 
respectiveiy. Moreover the parity of the iowest threshoid modes can be fixed by the 
proper choice of the phase shifts Q and <)). For exampie, for Q = 0 odd cyiindricai 
modes are preferabie by the iaser when the additionai phase shift introduced is <j) = 7t . 
The iasing frequencies of the even waves and odd waves are interchanged, when 
<j) = 2n, (Fig.6).

4.2. Mode spectrum and threshold gain of CG-DBR lasers with phase shift

For CG-DBR iasers, the gain region is iimited within a circie of radius 7?, and the 
grating is a passive region with a iength o f T = ^  -7 ? ,. Since the grating region is 
independent o f the active medium, we have a  = a , .  In our numerica) caicuiations, 
we ignore the tosses in the grating region, fe ., with = 0. We aiso assume that 
Co = 1. It is worth noting here that the imperfect coupiing between the gain region
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Fig. 8. Normalized small threshold gain versus normalized frequency parameter 87?̂  for CG-DFH 
laser with /f„,7?2 " 10, D = 1 /2  and (Q, <)<) equal (7t,rt).

Fig. 9. Dependence of normalized threshold gain on normalized frequency parameter 8/?̂  for
CG-DBR laser with " ! 0. * 1 /3  and (O, <j<) equal (rt/2,rt/2).
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and the grating region (Q , < 1) ¡cads inevitably to additiona] tosses, thus increasing 
threshold gain.

As in the case of CG-DFB iaser, the mode spectrum of CG-DBR structure strongiy 
depends on the va)ue and the position of additional phase shift ()) introduced in the 
grating region, as well as, on the phase shift G describing the position of the Bragg 
reflector with respect to the centre of the laser structure.

Figures 7 and 8 show threshold mode spectrum (;'.e., the normalised threshold gain 
a  vs. normalised frequency deviation 8T) for varying values o f the phase shifts (G, ())), 
;'.e., (n, 7r) and (n /2 ,  n /2 ) ,  respectively. The additional phase shift is introduced in 
the middle of the Bragg reflector. As we can notice, by proper choice of (G, <})) it is 
possible to reduce threshold gain (Fig. 8). However, in this case (;'.e., for D = 1 /2  ), 
the mode selectivity o f the Bragg reflector is rather weak. Thus, for such structure 
parameters, we can expect multimode operation above the threshold.

The influence of the position of the additional phase shift <)) on the threshold 
spectrum of CG-DBR laser structure is illustrated in Figs. 9-11, where similar laser 
characteristics as in the previous case are presented. As with CG-DFB lasers, the mode 
spectrum of CG-DBR lasers is very sensitive to the position of the phase shift <)< 
introduced. As we can notice, by properly choosing the position of the perturbation of 
the grating period, we can remarkably improve the mode selection of the Bragg 
reflector obtaining better condition for single mode operation. In particular, for the 
phase shifts equal G = n/2and<{) = n /2 ,  respectively, the threshold gain is reduced 
when the grating period perturbation is introduced at D = 2 /3  or D = 3 /4 .

Fig. ]0. Mode spectrum o f CG-DBR taser with = t .O, D = 2 /3  and (Q, <)<) equa) (n/2, n/2).
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Fig. IF Normalized small threshold a /?3 gain versus normalized frequency parameter 8 ^  for 
CG-DFB laser with = 1.0, D = 3 /4  and (O, <j<) equal (n/2.7t/2).

Fig. 12. Dependence of normalized threshold gain on normalized frequency parameter 8 ^  for
CG-DBR laser with " * 0' D = ! / 4  and (G, <)i) equal (7t/2,7t/2).
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(see Figs. 10 and 11). It is worth noting that in this case the relatively high mode 
selectivity is also preserved. Thus, for this laser structure we can expect laser operation 
in fundamental laser mode above the threshold.

However, the improper choice of the position of the perturbation of the grating 
period destroys selectivity of the Bragg reflector, and oscillations on fundamental laser 
mode require higher gain. Such a situation is presented in Fig. 12, where the threshold 
mode is plotted for similar values of the phase shifts as in the previous case (t'.e., 
Q = 7t/2and()) = 7r/2),butforthedifferentpositionoftheperturbationintroduced, 
D = 1 /4 .  As we can notice, in this case, the mode degeneracy appears at the Bragg 
frequency 8T), and mode selectivity of the laser structure is lost. Moreover, the 
threshold gain for the fundamental laser modes is increased.

5. Conctusions

In this paper we, have presented a detailed analysis for TE-laser modes in CG-DFB 
and CG-DBR lasers with additional phase shift introduced. Our numerical results show 
that by the proper choice of the inner radius of the Bragg reflector (t'.e., O), the 
additional phase shift <{) introduced and its position in the grating region we can reduce 
the threshold gain for the fundamental laser mode. Moreover, the selectivity properties 
of the laser structure can also be remarkably improved in comparison with the 
CG-DFB/DBR having uniform Bragg reflector region, which facilitates single 
frequency operation.
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