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The paper deais with presents the theoretical investigation into the infiuence of temperature on the 
fiber-optic interferometer action for difterent configuration of the iatter. Based on the phenomeno­
logical description of interference phenomena in the optical fiber, the role of coherence and 
polarisation in the fiber-optic interferometer is discussed. The final conclusions are used in the 
main part of the paper connected with an analysts of temperature influence on the action of 
different fiber-optic interferometer configurations. This analysis is based on the Jones matrix 
formalism applied to interferometers of minimal functional configuration. Finally, it is suggested 
using the fiber-optic ellipsometer for polarisation controlling.

1. Introduction
The development of the cheap single-mode optical fibres and related in-line elements 
in the eighties caused the detailed fiber-optic interferometer investigation. Those 
systems are designed for sensor application mainly due to their extremely high 
sensitivity [1]. Additionally, using optical fibers makes such a device free from the 
dust problem existing in a common bulk configuration. Then, in the last two 
decades, fiber-optic analogues of the classical interferometric systems have been 
proposed [2]. However, the properties of optical fiber used to construct such 
a system introduce significant modifications to the system action.

The main problem is connected with the fact that the commonly used, single 
-mode optical fiber has birefringent properties [3], thus gives polarisation influence 
on interference phenomena. Generally, those effects are well known as Fresnel 
-Arago's condition [4], but in the bulk interferometer this aspect is commonly 
neglected because it uses isotropic property of free space for beam propagation. For 
the above reason, a suitable analytical description of interference phenomena in 
optical fiber is presented in the next section. The results obtained were used as 
a general conclusion concerning the main difference between bulk and fiber-optic 
interferometric devices.

On the basis of these investigations, the influence of temperature on inter­
ferometer action is presented as the main part of the paper. The investigation of this
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parameter for system action has been selected because vibration and temperature 
are the main sources of instability of fiber-optic sensor [5], [6]. The environmental 
vibration is usually high frequency effect that affects noise level and decreases system 
resolution [7]. This influence can be reduced by perfect fixing or embedding all 
optical elements in one base. On the other hand, the temperature fluctuation is low 
frequency effect, which affects directly the drift phenomena [8], [9]. Because its 
reduction is more difficult than vibration reduction, then its investigation is 
especially interesting for understanding fiber sensor action. Therefore, in this paper, 
the fiber-optic interferometric configurations are compared with respect to their 
resistance to the temperature changes. In order to select the best fiber-optic 
interferometer, the minimal functional configuration has been used for such 
a comparison. Finally, it is suggested that the passive fiber-optic ellipsometer should 
be applied for monitoring the influence of temperature on the state of polarisation 
(SOP) in interferometer system.

The theoretical considerations provided here are based on Jones matrix calculus 
[10]. This method is especially interesting to the description of optical system for 
two reasons. First, it allows maintaining phase information, which is basic for an 
action of an interferometric system. Second, this method gives clear and lucid 
description of the effect of individual elements (and/or parameters of those elements) 
on the form of the system output signal. Moreover, recent development of computer 
software allows us to obtain at least visualised results of numerical calculations 
describing the giving system, if not simple analytical expressions.

2. Phenomenological description of interference phenomena 
in optical fiber

Since the angular size of the optical source along a single-mode optical fiber is 
constant (i.e., equal to the fiber numerical aperture), the spatial coherence is 
preserved in the transverse cross-section along the fiber [11], [12]. This is the first 
difference between the fiber-optic and bulk interference. In the latter system, the 
spatial coherence changes along optical way. Therefore, the time coherence and 
polarisation effects on interference phenomena in optical fiber should be analysed. 
Such an analysis based on phenomenological approach has been presented in [13], 
and here only a short review concerning the final results is provided.

Fiber with

Fig. 1. Schematic representation of fiber-optic interference phenomena.
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A schematic view of fiber-optic interference phenomena is shown in Fig. 1. The 
light beams interacting in a singie-mode fibre wiii be treated as quasi-mono- 
chromatic plane waves (actually, they have the Gaussian spatial field distribution). 
Moreover, it will be assumed that only the signal wave is perturbed (and not the 
reference one).

The two waves interacting at the point z can be described by the following Jones 
vectors [10]:

^R — ( 1 )

Rs = R [p+t?] J7 gi(<5 + x + s)
/̂ (z+L)—/̂ (z+!<)+#+(]* (2)

In this notation, the reference wave (1) is the plane wave with an elliptical SOP 
characterised by the amplitudes of x- and y-components (E  ̂and Ey) and the relative 
phase retardation <5. Additionally, the propagation constant /i = /?Q + /^ is assumed 
to be the sum of the propagation constant at the central frequency Mp of source 
radiation (/?o = — phase velocity) and the "dispersion" propagation
constant (^ i= (tu  —<Mo)/t7p, — group velocity) connected with spectral source
width <5(o ((Oo »  <5(o). All the differences and disturbances are included in the signal 
wave (2). This wave contains a parameter L — the differences in the lengths of 
fiber-optic arms, and a group of averaged (i.e., constant) quantities: x — changes in 
phase retardation between field components, p — the angle of polarisation plane 
rotation (R[(p] — the rotation matrix), and 3 — the phase shift induced by the 
measured effect. These values can be treated as the integrals 

2̂
= J y(z)dz, ^  = x, <p, 3 (3)

where z  ̂—z  ̂ is the fiber length on which the influence y  exists.
Additionally, the signal wave (2) also also the following perturbation parameters, 

the probability distributions of which are connected with the source spectral 
distribution: ?? — perturbation of the polarisation azimuth, s — perturbation of the 
phase retardation between field components, ( — the perturbation of the phase shift. 
In the first approximation, it was assumed that those perturbations depend linearly 
on the source spectral distribution (?? = E(a))(p, e = E(cu)x, ( == E(m)3, where 
E((u) =  (m — (OQ)/a)o), and and they are independent random variables.

The light intensity resulting in interference phenomena is as follows [4]:

I = <(E,+Es)(E„+E,)*) (4)

where the symbol ( . . .)  means averaging in time due to the source spectral 
distribution.

For the multi-mode Gaussian model source, containing the finite number (2n + 1) 
of single peaks, each characterized by the spectral distribution <?;, the central
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frequency a), and the full width at haif maximum (FWHM) <5<M; [13]

the iinai relation for interference phenomena in optica] fiber is

+  E^Ey ^  (cos(3-<5-/?;L)+'r(x)cos(3 + x + (5--/?,L)i;(^Lj sin^> (6)

where:

f;(x), f; =  a,exp (7)

and /?; =  nfc; is the propagation constant of the :-th source wavelength in optica]

The above relation contains open dependence of fiber-optic interference on 
coherence as well as SOP of interacting waves. They can be used for anaiysis of 
mutual reiationship between those two phenomena, as shown in [13], where the 
interpretation of Fresnei-Arago's experiments is presented. Generally, considering 
the application of the phenomenon in question to investigation of the sensor, the 
latter result (6), can be rewritten as [14]

where fringe visibility F and bias a are dependent on source coherence y and mutual 
polarisation of interacting waves (SOPs).

Taking into consideration the source with spectrum described by Eq. (5), each 
mode of which has the same FWHM ¿to separated by the same distance 
(n);+i —<M; = ?n<5a)), where wi(5<D <x mQ, and assuming linear polarisation of both 
interacting beams (E^ = Ey =  1/^/2) and <p = x = <5 = 0) from Eq. (6) we have

The numerically obtained visibility of this interference relation for classic He-Ne 
laser operating at a wavelength of 632.8 nm with nine modes and for two different 
peak separations (m = 4 and m — 5) as well as for single-mode is shown in Fig. 2.

As one can see, the measurable contrast in the optical fibre interferometer is 
achieved by suitable choose of the optical path difference E between the inter­
ferometer arms. It is the same relation as for the bulk interferometer — if the path 
difference is smaller than the source coherence, then interference exists [4]. 
Moreover, it is worth noting that in the fiber-optic technique, precisely adjustment of 
fiber lengths to obtain maximum interference visibility can be easily achieved using 
the fiber-optic stretcher based on a piezoceramic transducer [15].

fiber.

f = {1 + F(y,SOP)cos[3-a(y, SOP)]} (8)

(9)
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Fig. 2. Intensity as a function of optical path difference L for the nine-mode He-Ne iaser with <S<H =  6.3 
MHz and double peak separation m =  4 and m =  5 and for single-mode source (dashed 
line), [14].

In the case, when the interacting beams passing through the fibers of equal fength 
(L = 0) and the source used is monochromatic with frequency Mg, then from Eq. (6) 
the resufting fight intensity may be expressed as foffows [14]:

I = 2 + 2{[E^cos3+Ey cos(x+3)] cos<p

+ E^Ey [cos (3 — <5) cos (x + <5 + 3)] sin <p]}. (10)

Then the interference strongfy depends on mutua! pofarisation of interacting beams. 
This is the main problem with the for fiber-optic system because even if the 
parameters connected with initial SOP of incoming light beams (E ,̂ Ey, <5) are fixed, 
the parameters x, <p generally representing changes of fiber birefringence will affect 
interference phenomena. This polarisation effect on fiber-optic interferometers of 
different types has been investigated in [16]. Nevertheless, the dependence of both 
the fiber birefringence and different interferometry configurations on temperature 
should be investigated.

3. Influence of temperature on pofarisation behaviour in optica! fiber

It is well known that the single-mode optical fiber guides two degenerated modes 
HE*i, HE%i that are linear, perpendicularly polarised and have equal propagation 
constants (/?x =  /?y) [17]. However, any elastic deformation introducing perturbation 
in circular geometry of fiber core or circular symmetry of refractive index 
distribution across the fiber, decouples those modes (/?., ^  ^). Such a fiber has 
birefringence properties (J/? = I/?* —/?yl) [18], [19]. A general analytical description 
of this fiber can be made in terms of Kapron rule of equivalence [20]. In essence, the 
Kapron equivalence states that any unknown optical system or medium with regard 
to its effects upon polarised light can always be equivalent to a trio of basic discrete
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Fig. 3. Illustration of the Kapron rute of equivalence: a —the iight input and its reference axes X ,— F,, 
b — the rotation of the axes by an angie #  to the axis of [inear phase retarder c — the linear
retarder of 3 retardation, d — the output light after passage through a retarder undergoes additional axis 
rotation of O angle [16].

devices: a rotation of the axis (inciination) <P, a linear retarder (with phase 
retardation <5), and circuiar retarder (with axis rotation 0), as shown in Fig. 3. 

The above ruie has the following form [17] in the Jones matrix formalism [3]

M = R[i2-<P]G[<5]R[%] (H )

where in the Cartesian system the rotation matrix R and the retardation matrix 
G have the following form:

R(0)^
COS0
sin 9

— sin# 
cosOJ

G(<5) = j^xp(-i'(<5/2)) 0
exp(i(<5/2))_ ' ( 12)

The standard single-mode liber used in interferometer is mechanically deformed 
during interferometer construction. Thus, assuming that interferometer arm length 
L has resultant fiber twist per unit length <%<, and resultant retardation <5 with main 
birefringence axes oriented at an angle <P with respect to co-ordinate system, the final 
form of its Jones matrix can be re-written on the basis of [21] as

M = D[%]-R[<^-%]-G[%<;]-R[%] (13)

where: <%< = n^L , ^  = x,L, [18]. Additionally, D [<%<] — exp(—:<%<)I
is the matrix represented constant phase retarder, where I is the unitary matrix 
describing isotropic medium, — ^  + /?y)/2 is the mean value of propagation
constant, =  and x, are the optica! linear and circular birefringence
induced by deformation, respectively. The first and the last two components of this 
relation represent the phase shift <%< of light wave propagating through the 
single-mode standard and biréfringent fibers, respectively, while the second matrix 
connected with fiber twist represents rotation of SOP azimuth.

It has been experimentally confirmed that fluctuations of the optical phase 
passing through an optical fiber are generated mainly by the atmospheric tern-
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perature fluctuations [22]. It should be mentioned that in interferometric interaction 
according to Eq. (4) the above optical phase fluctuations represent phase value 
averaged over the time period equal to interaction time dt. However, because the 
temperature fluctuations are usually slowly time varying [9], their changes over 
interaction time dt might be neglected, i.e.

] t+jt
<%[t, T(t) + dr(t)]>= — f %[t, T(t) + d T(t)]dt =  <^(T+d T). (14)

Thus, the optical phase fluctuations with temperature changes dTcan be written in 
the first approximation as

%(T+dT) = %(T) + ̂ d T  (15)

where d^/dT is dependent on the type of optical fiber.
The phase changes with temperature for standard single-mode fiber are due to 

two effects. The first one is the change in fiber length due to thermal expansion or 
contraction, and the second one is the temperature-induced change of the refractive 
index. Hence, since <%< = n ^ L , one can write [5]

d<%< ¿(n/igL) , ^ dL  ̂dn^ 
d T ^  dT (IT/ /ío("^L^ + Tánj.) (16)

where: <5Ly =  5 x 10"^/°Cm, = 1 x 10*^/°Cm for silica fiber with n =  1.456 and
2 = 0.632 x 10" ̂  m [23]. Value for the thermal expansion coefficient and the 
temperature-dependent refractive index can vary significantly for multicomponent 
glasses [9]. Moreover, is itself a function of temperature and wavelength, and 
most tabulated values are averaged over a large temperature range and given for 
only a few wavelengths. Nevertheless, the above value will be used in numerical 
calculation in the following part of the paper.

In the case of linear birefringence induced in single-mode fiber, the temperature 
sensitivity of phase = d n ^ i  is given by the relation [24]

d<%*G
dT

d(dnfíoL) /d n d n
dT ° \ V d T Í  + dn (17)

Since the second term in (17) is smaller by two orders of magnitude than the first 
one, it can be neglected and the equation becomes [25]

d^G , dn dn dn
dT ° n dT ° n <5nyT — (5nT 

nT„
(18)

where L , = 2/dn is acharacteristic parameter of fiber birefringence named the beat 
length.

Finally, for circular birefringence induced in single-mode fiber, the temperature 
sensitivity of phase <%<R = x,L can be expressed as
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d ^  d(x,L) d(2GC%,L/n)
dT "  d r  "  d r —  ̂2GC< ,̂L (19)

where: G =3.27x10^° N/m^ is a rigidity modulus, C = 3.51x10"*^ m^/N is 
a photoelastic constant for silica liber [26], and <%),L = % is total liber twist a thermal 
independent parameter.

Thus, using relations (15) —(19) the matrix M of liber-optic interferometer arm vs. 
temperature changes dT  can be expressed as

M(dT) = D [ ^ ( d T ) ] R [ ^ ( d T ) - ^ ] G [ ^ T ) ] R M  

where:

<%< (d T) = <%< + d T =  ^  ["L + (n<5Lr + L^Uj.) d T ], (20a)d r

^ ( d r )  = ^ + ^ d r  =  2 G C ^ l - ^ d r ) ,  (20b)

^ ( d r )  =  ^ + ^ d r =  2 j r ^ l + ^ d r ) .  (20c)

The light wave passing through such a liber has the SOP described in the Jones 
formalism as a vector [10]

E.„, = M(dT)E,„ (21)

where

X
A e "  - I_sia9e"'_

(21a,b)

is the so-called standard Jones vector of plane wave from which the two main 
parameters describing the SOP, the azimuth 0  and the ellipticity e, can be obtained 
at any point along fiber as [27]:

0  = -  arctan ]
pR e(X )" 1 . r2Im(X)* 

, e =  -  arcsm --------^
' 2 J

where X =

(22)

Thus, from relations (20) —(22) one can see that in optical liber used for inter­
ferometer construction temperature generates changes of the polarisation azimuth 
(via matrix R) as well as the polarisation ellipticity (via matrix G). Moreover, 
for biréfringent liber described by (20), the thermal dependence of liber circular 
birefringence influences ellipticity changes, whereas the thermal dependence of liber 
linear retardation influences azimuth changes, as shown in Fig. 4. The linearly 
polarised input light and the main axis of linear retarder equal n/4 (<P — n/4) are 
assumed in simulation.
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Fig. 4. Temperature effects on the SOP of the fiber-optic interferometer arm for changes of fiber twist rate 
<%<, (upper row) and fiber birefringence i ,  (tower row). For simuiation the following parameters have been 
assumed: A =  632 nm, n =  1.456, =  5xl0"^/°C m , 5n^ =  lx l0" ^ /°C m , i  =  2 m. Additionally,
i ,  =  0.1 m for upper, <%< =  Tt/4 rad/m for bottom pictures.

4. Temperature stability
of different fiber-optic interferometer configurations

Even though the above changes in SOP may be smaH, in interferometric interaction 
described in Section 2, they p!ay a significant roie, mainiy due to high sensitivity of 
the system in question. Moreover, the different types of fiber-optic interferometers 
use various configurations of optica! fiber part, and thus their action may be 
distinctly influenced by fiber birefringence, as has been shown in [14], [16]. Here, the 
analysis is extended to the case of temperature influence.

The main fiber-optic interferometer system can be divided into in-directiona! 
interferometry (IDI) and counter-directiona! interferometry (CD1), as is shown in 
Fig. 5. In the first group, the signa! and reference beams have the same direction of 
propagation, whereas they are opposite in the second one. The reason for adopting 
such a classification has been widely discussed in [16].
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QPI Differential (polarimetric)

CD! Sagnac(loop)

Ring Resonator

Fabry-Perot

Fig. 5. Classification of fiber-optic interfereometers: IDI — in-directionai interferometry system, CDI 
— counter-directional interferometry system, Cl, C2 — couplers, x N  — multi-path ways, P — polarizer 
[16].

Any of the above system descriptions needs to include the fiber-optic coupier, 
which is assumed as an ideaHy isotropic 2 x 2  optica! divider. The matrix represen­
tation of this eiement is shown in Fig. 6, and can be written on the basis of [21] as:

exp( —iH^L) 0 cosXL 0
0 exp( —¿n^L) 0 cosXL

= D[n!i()L]A [cos XL],

Texp( —:nitoL) 0 l i n  XL 0 re-i*/2 o
] 0 exp( —:n/iQÎ) 0 sinXLj l_0

= D[n/t„L] A[sinXL] D[it/2] (23)

where: X is the coupling coefficient of two optical fibers, L — the coupling length, 
and matrices Cy and stand for the indicated transmission (in Fig. 6, from 
branch 1 to branch 3) and reflection (in Fig. 6, from branch 1 to branch 4) ways 
through the coupler, respectively.

As one can see, the coupler action depends on fiber coupling. For an ideal 
coupler giving equal division between output branches the matrix A representing 
absorber (see Eq. (23)) should be identical for both ways, thus XL= n/4 plus 
modulo 2n [21].
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Fig. 6. The Jones marix representation of ideal isotropic liber-optc coupler. Numbers 1,. . .  4, indicate 
appropriate coupler branches [21].

The change of temperature introduces changes in fiber fength and, generally, 
affects the coupling ratio. However, owing to the current high technology the 
commercially available cheap couplers have stable parameters in a wide range from 
— 20 °C to +60 °C [28]. For that reason, the thermal effect on fiber-optic coupler 
has not been taken into account in arm description, and only constant phase shift 
between two output branches will be considered. This phase shift in interferometry 
system is the main source of constructive or destructive interference pattern 
generation, as shown schematically in Fig. 7.

Fig. 7. Schematic view of constructive (a) or destructive (b) interference pattern as a result of double 
passing of a signals through the Cber coupler [14].

Applying the above coupler description to the dependence describing fiber optic 
interference (4) and additionally using relation (21) one can obtain after simple 
mathematical transformations the following matrix form of the interferometer 
normalised transfer function [29]

7 = 0.5[+Fcos(3' + %o], F=A bs[?n(/tr)], ^  =  Arg[w(JT)] (24)
where the general complex parameter m

nt(J T) = T)M ,(J T)E„ (24a)

depends on polarisation behaviour of input beam (E,J and temperature dependent 
reference and signal arms of interferometer (matrices M# and M,), respectively.
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In the above notation, sign ( + /—) is connected with construtive/destructive 
interference pattern, V describes scale factor (which is directiy proportional to the 
system sensitivity), whiie phase coefficient is a sum of measured phase 3' generated in 
a given configuration and additional shift <%)„ (bias). The slow time variability of the 
latter quantity is usually classified as a drift. Moreover, the upper sign t  describes the 
Hermite-conjugate system operation.

To enhance temperature dependent polarisation properties for a given system, 
the following additional assumption has been made in the further part of this work. 
Let the reference arm be isotropic (described by a matrix of constant phase retarder 
D(d) = I exp (—id) shown as the Erst matrix in (20)) and assume that reflection in 
Fabry-Perot and Michelson systems takes place on the tails ended with 100% 
mirrors (additional phase factor exp(—in)) [16]. Moreover, to obtain only tem­
perature influence, lengths of both interferometer arms are equalised. Theoretically, 
this can be performed for Mach-Zehnder and Michelson systems under assumption 
d = dg =  dg. For multiple-beam systems (ring resonator and Fabry-Perot), it is 
necessary to apply suitable highly coherent sources, because they are in general 
unbalanced. On the other hand, for two other configurations (balanced systems) high 
contrast is obtained automatically.

T a b l e .  Temperature dependences of the reference and signal paths for the given interferometry 
configuration in the Jones matrix notation. Additionally, the upper sign T indicates matrix transposition, 
In =  {{1,0}, { 0 ,-1 } }  is inversion matrix characteristic for Sagnac interferometer [30], and indicates 
matrix for a simgle pass through the signal arm.

Interfeometer
type

Reference path described 
by M„ matrix

Signal path described 
Ms matrix

Mach-Zehnder D M D M R [% ,(J  T) -  % [GM „(d r )]R [3 ]e -
Differential D [ - ^ ( d T ) /2 ] DM „(JT)/2]<.-'3
Michelson D [2J  +jt] D [2J+ n ]R l% ]G [24 .6 (d T )]R [d []e-'i3
Sagnac (loop) D M In R l% ]G [< P ,;(jr)] D M R M ,(J  T) -  %] G M (J  T)]R[(P]In<.-'3

Ring resonator 
FabryPerot

1 D [2 7 tN ]R [^ (J T )-sP ]G [^ (d T )]R [tP ]e -^  +'

(reflection type) 1 D[2nN]Rr[%]G[2%G(JT)]R[%]e-'i3 "

Applying the above assumptions to the particular optical configuration leads to 
matrix description of the signal and reference paths in a simple general form given in 
the Table. The parameter d = <%<(dT), introduced in the Table, indicates isotropic 
phase shift caused by the light passing through the whole arm of length i ,  and is 
equal to the phase described by Eq. (20a). Moreover, for a multiple-beam system 
a resonance action has been assumed, :.e., a 2nN phase shift for a single passage 
through a cavity [16].

The analysis of matrices describing interferometer arms of particular optical 
configurations has shown that only d%?erent:af ("poianmefncJ system is insensitive to 
polarisation properties [14], [16]. This fact is obvious because the idea underlying
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construction of this system is based on the poiarisation hoiding fiber (constant phase 
retarder D with beat length Lg < 1 mm represents arms). However, the temperature 
dependence of differentia! phase shift (18) affects scaie factor but not bias which is 
stab!e, as is shown in Fig. 8.

20 22 23
Ti°C]

22 23T[°C]

Fig. 8. Temperature influences on differentia) interferometry action with beat length as a parameter. The 
optical fiber length i  =  1 m has been assumed.

In the above simulation the perfect polarizer has been assumed as a part of 
differentia! system action. The results obtained are in agreement with those of 
theoretical analysis of the temperature sensitivity of a fiber-optic polarimeter 
presented in [31], where it is shown that zero temperature sensitivity may be 
achieved for certain coating materials of appropriate thickness on fused-silica optical 
fiber. It should be aluminium for sandwiched construction and copper for non 
-embedded fiber-optic structures.

Other systems are more or less affected by temperature dependent polarisation 
changes of of optical fiber used in its arms. Further part of the paper is devoted to 
a discussion of this problem.

4.1. Two-beam fiber-optic interferometry systems
For the Mach-Ze/inder system, applying the matrix notation for arms presented in 
the Table gives the transfer function of the system in the form of (24), where

m(z)T) -  E L R № (JT )-% ] G [^(Jr)]R [< ř]E ,„  (25)

stands for the influence of temperature on a given configuration action.
If effects causing rotation of polarisation plane are present only in the fiber 

(M, = D(J)R[<%<g] in Jones description), visibility F and bias have following 
temperature dependences:

F(J T) = ^/cos^g(JT )+sin^g(JT )sin^(20)sin^, 

(^o(dT) =tan"* [ —tan<^g(JT)sin(20)siná],

(26a)

(26b)
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where (9, <5) are parameters of input light SOP (21b), and <%„(/) P) is described by 
relation (20b).

As one can see irom (26), a change in sensitivity and drift take piace for any input 
beam SOP. But for iineariy polarised input beam (<5 = 0), the temperature generates 
a change in system sensitivity only, without affecting the bias, as shown in 
Fig. 9a,b. Generally, this temperature influence is very small (Fig. 9c,d), but for 
interferometric measurement where detected changes are extremely small, it might 
play a significant role.

Bias stability [deg]

Scalefactorstabi!ity[deg] Sca!efactorstabüity[deg]

Fig. 9. Sensitivity (a, c, d) and bias (b) iluctuations for the Mach-Zehnder configuration with arm iengths 
T =  2 m excited by iinear beam in the case of variable temperature. The iiber twist rate <%<(d T) is used as 
a parameter.

On the other hand, if the system only contains induced linear birefringence 
(Ms = D(z))G[^g] in Jones description), the respective temperature dependences of 
the parameters F and <%<Q will equal:

F( J  F) = ^ /c o s ^ ^ (d r ) /2 ]  + sin^[^(z)T)/2]cos(29), (27a)
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<^o(jr) =  tan*^{-tan[^(dT)/2]cos(20)} (27b)

where the temperature dependent linear retardation is described by reiation (20c).
As one can see, the temperature influence on the Mach-Zehnder system depends 

on the azimuth of input poiarisation 0. According to the resuits of numerical 
simulation shown in Fig. 10, in the case of suitable system adjustment, :.e., for 
uniform excitation of both polarisation modes of the liber (0 =  (2n+ l)n/4), the 
temperature dependent liber birefringence causes the change a sensitivity only. For 
single mode excitation (0 =  nn/2) the scale factor is temperature insensitive, while the 
drift is directly proportional to temperature changes.

Fig. 10. Sensitivity and bias stability for the Mach-Zehnder system excited by tineariy poiarised beam 
with different azimuth in the case of temperature dependent linear birefringence ^ ( J T )  described by 
reiation (20c).

The above situation changes in the case of the Micheison system, which is 
a counter-directional interferometer (LDI). For this interferometer, using the matrix 
description for arms shown in the Table, one can obtain a system transfer lunction in 
the form of (24) where

m(J71 =  ELR[-<ř]G [2^(dT)]R[<P]E,.. (28)

It results from the above notation that in this configuration liber-optic path can be 
treated as a classic birefringent plate introducing a temperature dependent retar­
dation 2<j)g(d7], placed at angle <P with respect to the x-axis of the reference 
co-ordinate system [10]. Hence, if a path only contains an element introducing 
rotation of polarisation plane (<%<g = 0, G [0] =  1), one can obtain the following 
expression:

F ( d T ) = l ,  ^ .  = (dT) =  0, (29)

thus this system is temperature independent in the case of existing pure liber twist. 
Physically this result is easy to explain because it is due to the fact of both beams
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Fig. 11. Sensitivity (a, c) and bias (b, d) for the Michelson configuration excited by linearly polarised beam 
with different azimuth 0 and temperature dependent fiber linear birefringence T).

passing thwice in opposite direction through the same opticai fiber. On the other 
hand, in the presence of linear birefringence oniy (<%<R = 0, R[0] =  1), the respective 
expression is

F(J T) = ^ c o s ' [^g(d T)] + sin^ [<^g(d T)]cos(20), (30a)

<̂ o(d = tan "  ̂ — tan (d T)] cos (20)}, (30b)

thus this configuration is twice as sensitive to a temperature change of linear 
birefringence as the Mach-Zehnder system is (Fig. 11). The character of this 
sensitivity as a function of input beam SOP is analogous — the system is dependent 
on the azimuth of input polarisation only.

Note that the last two configurations (the Mach-Zehnder and the Michelson 
system) have been investigated under assumption of signal and reference arms being 
equal in length (L = Tg = Lg). In such a system, according to the above analysis, it 
is only temperature dependent birefringence that has influence on its work. Any 
difference in arm lengths introduces additional bias, which is temperature dependent
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as shown by relation (20a). Because the magnitude of this influence is about two 
orders higher than temperature influences on birefringence induced in optical fiber, 
thus it may be a more serious problem.

The /iher-optic Sapnac (loop]  inietyèroTneter (FOSI) as a double-beam system 
includes all configurations discussed so far. This system is CDI as the Michelson 
system, but it is also balanced (as a differential interferometer, propagation takes 
place in one optical fiber only). Moreover, the signal path is described by Jones 
model, in the same way as for the Mach-Zehnder one. The existence of a single 
coupler in the system causes that distribution of output power is analogous to that 
for the Michelson configuration.

Fig. 11 Sensitivity (a, b, c) and bias (d) fluctuations for the FOSI excited by lineariy polarised beam in the 
case of variable temperature. The fiber twist rate <%<, is used as a parametr.

According to the matrix description from the Table, one can obtain transfer 
function in form of (24), if a transducer is placed near to the coupler [29]. In this case 
parameter m is expressed as

m(JT) = E L R [ ^ ( d T ) - ^ ] G [ - ^ c ( J T ) ] R [ ^ ( d T ) ] G [ ^ ^ n ] R W E ,. .
(31)
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It results trom the above dependence that if only one factor exists, which causes 
a rotation of polarisation plane (<^ = 0, My = D(J)InR[<^^(dr)], the following 
simple analytical dependencies can be obtained:

which exhibit the same character of changes as in the Mach-Zehnder system (see 
relation (26)). However, the temperature influence for FOSI is twice as big as for the 
Mach-Zehnder system, which is is shown in Fig. 12.

For the FOSI, thermal dependent circular birefringence causes a rotation of 
polarisation plane that affects both beams in the same way. Therefore, for the total 
rotation induced by it/4 both interacting beams are perpendicular at the output and 
the sensitivity drops to zero (see Fig. 12a). If a total rotation induced angle is equal 
to Tt/2, which is the case of signal vanishing in the Mach-Zehnder system (see Fig. 9), 
the output beams in the FOSI are rotated by n, being thus parallel, and so the 
sensitivity is the highest.

On the other hand, if only linear birefringence is observed (0R = 0, 
M$ = D(d)InG[<^g(dT)]) from (31) one can obtain the following expression:

which means that the FOSI is insensitive to the pure linear birefringence and their 
temperature dependencies.

The above special properties of FOSI are caused by the fact that only one fiber is 
used as a path for both interacting beams. Due to their counter-running propaga­
tion, the effect of linear birefringence is neutralised, because independent of the 
SOP of the excited beam at some arbitrary point along a loop, both beams exhibit 
the same SOP. According to phenomenological description presented in Section 2, 
such a situation causes the highest interference contrast.

The unique property of FOSI is its balanced character, which means that signal 
and reference arm lengths are always equal. This guarantees coherence of interacting 
beams as well as temperature insensitivity of constant phase retardation observed in 
Mach-Zehnder and Michelson configuration. Hence, this configuration is similar to 
the differential system but its sensitivity to external disturbance is by two orders 
higher, because in this interferometer the disturbance changes optical phase and not 
the differential one. Comparing the results obtained for the FOSI with those of the 
Mach-Zehnder shows that FOSI system is more thermally stable. Next, comparing 
the Michelson system, which reveals temperature dependence of linear birefringence 
(<^g(JT) of an order of 10"^—10"^ radian per meter per °C), with the FOSI which 
reveals temperature dependence of circular birefringence ( ^ ( J T )  of an order 
of 10" 6—10*3 radian per meter per °C), the latter seems to be more thermally 
stable, as well.

F(JT) = ^cos^ [2<%.„( J  T)] + sin' [2%x(J T)] sin^(29)sin^, 

<%<Q = tan  ̂ — tan [2 /) T)] sin (2 0) sin <5 ]

(32a)

(32b)

F(JT) = 1, %.(JT) =  0, (33)



It is for the above reasons that the FOSI investigations have been the main area 
of the author's researches in the Applied Physics Division, Institute of Appiied 
Physics, Military University of Technoiogy, Warsaw, Poland, for nearly twenty 
years, as presented in review paper [32].

4.2. Multiple-beam fiber-optic interferometry systems
The influence of temperature on polarisation properties of liber-optic path described 
above is also characteristic for the multiple-beam fiber-optic interferometry system 
shown in Fig. 5, i'.e., the ring resonator and the Fabry-Perot. However, because such 
systems used multiple crosses through some optica! liber, the form of normalised 
transfer function in so-called reflection mode of operation for low-Snesse system can 
be written as [33]

^  l-F c o s [3 ' + ^ ]  _  
l + R i-2R Fcos[3 ' + %o]

where R stands for the intensity reflection coefficient.
Then the thermal influence on the rtngf resonator system that is IDI can be 

obtained with good precision from this relation and the matrix form describing its 
arms shown in the Table. The respective numeric calculation [16], presented in 
Fig 13, shows that for the ring resonator configuration the effect of temperature 
influences on polarisation parameters is the same as for the Mach-Zehnder system. 
The linearly polarised input beam with azimuth 0 = n/4 has been assumed for 
calculations.

As one can see, despite of the same character of the temperature influence on 
particular liber polarisation parameters (as for the Mach-Zehnder system discussed) 
the sensitivity of ring resonator to any change of those parameters is distinctly 
higher. This situation is caused by the peculiarity of a multiple-beam system, ;'.e., the 
fact of the light passing many times through the same piece of liber. It is easy to 
show that for the ring resonator the vanishing of a signal takes place for as small

Po/aWsaiion AeAauioar o/" ¿¿yereaí /ř&r-opfřc mter/ěrometer ... 417
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Fig. 13. Comparison between transfer function 7 of the Mach-Zehnder and the ring resonator for 
temperature dependent parameters of the signal path; the effect of: a -  circular birefringence ^ (J T ) ,  
b — liner birefringence R =  0.9 has been taken in the simulation.

changes in polarisation piane rotation as <^(z! T) = n/7 (or linear birefringence 
0g(/lT) = n/7), compared with n/2 for the Mach-Zehnder system. Therefore, the 
muitipie-beam system requires better temperature control, which is usuaily done by 
applying the polarisation holding liber.

The above discussion of the temperature effect on the output signal is also true 
for the next multiple-beam configuration, :.e., the Fabry-Peroi system that is CDI. 
The transfer function of this system may be obtained with good approximation 
using relation (34) and the matrix description of the signal path from the 
Table [14].

An analysis similar to the one for the ring resonator shows that, in this case, the 
influence of temperature for the circular or linear birefringence (see 
Fig. 14) produces the same effect on transfer function as for the Michelson system. 
The peculiarity of multiple-beam configuration is saved. The latter means the 
existence of thin "areas" of sensitivity to perturbation.
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Fig. 14. Comparison of f for the Micheison and the Fabry-Perot systems for temperature dependent 
parameters of signai path; a — circular birefringence <^(d T), b — iiner birefringence F). R =  0.9 has 
been taken in the simulation.

In turn, comparing the characteristics of the above muitiple-beam interferome­
ters shows that the Fabry-Perot system is iess sensitive to SOP disturbances upon 
temperature changes. Note the double period of transfer function due to the beam 
passing twice through an optica] ůber in the signai path. The existence of the 
rotation of polarisation plane only, without birefringence, does not change the 
transfer function. For that reason, the Fabry-Perot configuration should be easier to 
be subjected to technical realisation.

5. Possibility of the SOP monitoring during interferometer action

The above analysis shows that the SOP of interacting beams in each fiber-optic 
interferometer is usually temperature dependent, and generates some errors in the 
system work. Use of polarisation holding liber is one way of minimising or 
eliminating this problem, but such a liber and fiber-optic related elements are very 
expensive. Hence using the standard single-mode liber for its construction needs 
strict temperature control or monitoring the changes of light SOP passing through 
optical liber. The second method consists in applying a liber-optic polarisation 
analyser connected to a free output end of a coupler used in the interferometer.

The commercially available Hewlett-Packard device HP8509B, giving infor­
mation about SOP is one, however, very expensive, possibility for such a measure­
ment [34]. Thus, some cheaper in-line versions of the fiber-optic polarisation 
analyser have been proposed [35]. The first of them, named liber-optic polarimetric 
ellipsometer (FOPE), is based on controlled birefringence induced in a piece of 
standard single-mode ůber. Despite the simpicity of system conůguration the FOPE 
action is thermally unstable [36], because it uses the standard single-mode ůber. 
Stable temperature operation has been obtained in the second system based on the 
interferometric Sagnac conůguration [37]. The main reason for choosing it is the
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U1(t)

U2(t)

Fig. 15. Construction scheme and general viwe of the FOSE [37].

most stable environmental operation of this interferometer configuration, shown in 
the previous section. An idea and generai view of this device, named FOSE 
(fiber-optic Sagnac ellipsometer), is shown in Fig. 15. This system, based on the 
modified FOSI [32], has a doubie heiix coifed foop, the classical fiber-optic phase 
modulator M, polarizer controller PC2 and input coupler Cl, all in the loop. The 
additional input controller PCI is used to compensate for birefringence of the input 
liber.

Proper operation of the system requires orthonormal SOP of two interfering 
beams. This is achieved by changing the loop birefringence fin PC2. The phase 
modulator M (close to one end of sensor loop) secures the SOP modulation of 
interfering beams according to the fourth Fresnel-Arago's condition. The additional 
output coupler C2 splits up the output beam into two parts, which are detected by 
polarisation sensitive detectors D1 and D2. The PC3 and PC4 are used for the final 
system adjustment, :.e., to assure 0 and Tt/4 azimuth angles of the polarizer P in front 
of the D1 and D2 with respect to the fast axis of M. The lock-in amplifier detects 
appropriate harmonics from output signals Ul(t) and U2(t), as well as assures 
suitable driving of M (driving by electrical signal of the type ¿cosmi). Finally,
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the special numerical software is used to calculate chosen parameters of the 
polarisation ellipse, i.e., (0, <5) parameters described by relation (21 a). This program­
me u:a GPIB interface also controls the proper amplitude of phase modulation 
<5„ = 2.4048 (see [37], for details).

Fig. 16. Stability of the FOSE [38] (a), and FOPE [36] (b) operation. The input SOP measured by the 
Babine-Soieis compensator was: g — 19.5 deg, 0 = 18.8 deg and 5 = 13.5 deg, 6 = 9.8 deg for FOSE and 
FOPE, respectiveiy.

The system investigations for full polarised light have shown its measurement 
accuracy equal to 0.09 deg and 0.03 deg for <5 and 0, respectively [37]. Recent results 
obtained for partially polarised light gave 0.11 deg and 0.07 deg for the above 
parameters [38]. Moreover, as one can see from Fig. 16a, the FOSE has a good 
long-term stability, due to the aspects discussed in Section 4. These results can be 
compared with the ones obtained for FOPE, as shown in Fig. 16b. The comparison 
of those systems shows FOSE to have the long-term stability by one order better 
than FOPE.

6. Summary and conclusions

The present description of different liber-optic interferometry configurations allowed 
us to reveal basic differences between the bulk and fiber-optic interferometers. 
Optical liber and fiber-optic elements in general exhibit variable birefringence. On 
the contrary, paths of classic interferometers are usually isotropic or constantly 
biréfringent. Therefore, liber-optic interferometer systems exhibit higher sensitivity 
to environmental polarisation disturbances. The thermal influence on polarisation 
properties of liber-optic interferometer action has been investigated in this paper. 
Note that it is an important, but not a unique, error source of the iiber-optic 
interferometer action. Another source of errors are the mechanical vibrations, which 
has been mentioned in the introduction. Moreover, the instability of commonly used 
semiconductor optical sources is the next serious error source. Finally, because the 
fiber-optic interferometer is a complex of different iiber-optic elements connected 
in-line to form a system, the splice losses (as small as 0.05 dB for fused splice) give
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about 0.1 —0.2% back-reflected signals which are the source of interference error 
signals. Because they propagate jointly with interfering beams it is very difficult to 
eliminate them.

The analysis of different configurations shows that particular systems exhibit 
characteristic features important for application purposes. The most temperature 
sensitive are Mach-Zehnder and ring resonator configurations. Hence, contrary to 
bulk optics, the Mach-Zehnder system is rarely applied in practice. There are two 
main reasons for that. The first one is difficult equalisation of arm lengths. The 
second one is difficult thermal stabilisation of the system action. On the other hand, 
the most stable seem to be differential and loop interferometer systems. There are 
also two reasons for that situation. First, from the construction idea these systems 
have arms of the same optical length. Second, the same fiber is used as the signal and 
reference arm, which stabilises working conditions.

The general sensitivity of any configuration to variable arm polarisation 
properties, shown in Section 4, becomes an important problem that should be solved 
for any application of fiber-optic interferometer. One of such solutions is to 
compensate arm polarisation properties by applying a fiber-optic polarisation 
controller, which allows us to obtain respective system adjustment. However, 
because it is a passive fiber-optic element, its use does not guarantee compensation 
thermal changes of birefringence, which generate phase or visibility errors. This 
means impossibility of measuring unequivocally external disturbances by registering 
of a change of output intensity only. The general form of transfer function for a given 
interference configuration (24) contains three variables, :.e., the measured phase 
3 and two SOP parameters (0, <5). For that reason, unequivocal character of 
measurement requires also measurements of three independent quantities, for 
instance, intensity and two parameters describing Jones vector. Such a system is fully 
polarimetric, in which one can find any phase disturbance by measuring the output 
intensity and the SOP one can find any phase disturbance.

An example of the system that can be useful for monitoring SOP changes is s the 
fiber-optic polarisation analyser. Its construction in interferometric configuration 
has been suggested and described in last part of this paper.
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