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Influence of optical system parameters 
on the light distribution at output
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Optical systems can be analyzed in terms of geometrical or diffractive optics. The diffraction 
integral o f  wave propagation depends on elements of transfer ray matrix that describe an optical 
system. This article discusses relationship presenting a diffraction integral for some holographic 
system written in terms o f transfer ray matrix.

1. Introduction

Holographic optical element can be used as a conventional optical element in the 
development of coherent optical processor systems. The capabilities of this 
holographic element to perform more than one function at a time can be utilized 
profitably in the development of multifunction signal processor systems. This paper 
illustrates that each holographic system can be analyzed by use of either diffraction or 
geometrical optics, and the choice of the approach depends on the particular situation. 
A diffractional integral is derived when one relates the optical fields on the input plane 
of an optical system to those on its output plane. It is written in terms of the parameters 
that describe the holographic system under consideration. Thus, the kernel of the 
diffraction integral determines a connection between diffraction and the geometrical 
optics limited to the paraxial approximation. Geometrical optics is couched in terms 
of ray tracing matrix, where refraction (or diffraction) and translation matrices are 
multiplied together to form an optical system matrix [1 ], [2].

2. Diffraction integral and eikonal function

Holographic optical element is just a hologram that contains the full information of 
the recorded wave fronts. Apart from being more compact than its conventional optical 
element, it can provide simultaneous channels for carrying out different kinds of signal 
processing operations such as spectral analysis, filtering, pattern recognition, etc. 
Consider a description for recording and reconstructing a hologram. A typical 
configuration is shown in Fig. 1. Let u0(x0, y 0 ) be the object distribution field inserted 
in the input plane (x0, y Q) at zQ on the axis. If  beside amplitude information the phase



712 E. Jagoszewski

Fig. 1. Holographic system with an object transparency in front of the lens for studying the transform 
operations.

information is required, then diffraction theory is necessary in analyzing the quality 
of the optical system. The relationship between output and input planes of the 
holographic system ray matrix [2] is given by the equation

XI A B x0

k C D £>o_

whereas the expression for optical field distribution described by Huygens-Fresnel 
principle [3] between these two planes is as follows:

CO

u i (x,, yj) = J |  u 0 (x0, y Q)h(x0, y Q; x„ y f)dx0 dy0 , (2)
—00

where the integral kernel h(x0, y 0 \ xI,y I) is a transmission function (impulse 
response) that determines the field amplitude at point (x ,, y f) of output plane produced 
by a point source of unit strength and zero phase at the point (xQ = x'0, y 0 = y ’0), i.e., 
when U0(x0, y 0 ) = S(x0 -x '0 )S(y0 -y '0).

As we know, geometrical optics laws follow from M axwell’s equations at limit 
A. -> 0 (for large wave number 2n/X ),  and the basic equation of geometrical optics 
is then the eikonal equation

(3)

where n (x ,y ,z ) is the refraction index of ray propagation region. The eikonal 
function S(x,y, z) is the optical path of ray that is orthogonal to wave front
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S(x,y, z) = const. If Fresnel approximation is accomplished, then the distance zQ (and 
Zj) between object and aperture (or aperture and output) plane is much larger than the 
maximum linear dimension o f the aperture. Therefore,

The optical path along the ray connecting the source point PQ (xQ, y Q) with the 
point Pj (xj, y,) in the output plane is

S(*o, y  o', xpy ,)
( x - x 0)2 ( x - x , ) 2 , ( y - y 0)2 , ( y - y , ?

Zn +  Z / +  ------------------  +  ----------------  +  ------------------  +  -----------------
0 7 2 (z0 + z) 2 ( z j - z )  2 (z0 + z) 2 (zf - z )

where the spherical substrate of HOE [4] can be expressed in the form

2 , 2 ,  2 , 2,2
z ( x , y ) ---- T^~ + '----T— ■

2 P 8p3

Now, the eikonal function defines the optical distance along the ray (see Fig. 1), 
and the transmission function evaluated at the observation plane due to the source point 
describes the optical field in the form

K x 0 , y 0 \ x i , y i) = ^ (W /)ex p |^ y S (x 0,y0 ; W 7) ·

Therefore, diffraction integral (2) determining the amplitude distribution of field 
in the observation plane is given by

oo

u i  0/>T/) = ^ 0 />yd J J U0(x0,y 0) e x p x ^ y d ^ x o ^ o -  (4)
- 0 0

Thus, Equation (4) shows the relationship between field distribution and the optical 
distance along the ray connecting the input and the output planes of an optical system.

3. Grating equation for ray transfer

The analysis of holographic optics is in many ways similar to that of conventional 
refractive optics. In this paper, we describe the ray tracing through a diffraction surface 
and derive an equation for holographic optical element in the matrix form, analogously 
as for ray tracing through refraction surface [1]. The most general approach considers
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propagation o f the incident and diffracted waves the direction of which is determined 
by the local grating spacing and its orientation. It is relatively simple to trace 
rays through a holographic element, since one can easily compute the exact 
directional cosines of each beam incident and diffracted at a given point of the 
diffractive surface. A method of ray tracing through a curved holographic element has 
been first considered by W elfo rd  [5], and the vector equation applicable to those 
elements formed on substrate of any shape is represented for the first order of 
diffraction by

where n is a unit vector along the local normal to the holographic surface at an incident 
point PH (x,y)', analogously rQ, rR, rc, r, are the respective unit vectors along the 
rays, as shown in Fig. 2. From Equation (5) the scalar product of the two following 
vectors is not equal to zero

We remember that the grating equations for the incident ray with the direction 
cosines (£,c , r)c , Çc ) impinging on the optical element are

(5)

'0
(6)

but can be rewritten in the form

A,0

0

Fig. 2. Unit vectors along the reconstruction and diffraction rays and the local normal to holographic 
surface.
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*1/ = flc  + r ^ o - ^ ) ·A0

This result shows the reconstruction beam at a flat holographic diffraction surface 
and determines the direction cosines of the respective image beam. For holographic 
optical elements on any shaped surface we multiply both sides of Eq. (6) by the unit 
vector of the local normal of a curved surface, and we obtain

r i - r c - r (r0 - r R) = nr.
Ao

The direction cosines of the diffracted beams in a rectangular coordinate system 
oriented with its z-axis along the vertex normal (optical axis), are then discribed as 
follows:

« / -  5c  + f  « o - W  + £ r >A-0 P

*1/ = 'Hc + r  (^0-^/?)+^ r>
A,0 P

where p is the curvature radius of the local curved holographic substrate. In the case 
of flat surface, p -> oo, and the third expression on the right-hand side of the above 
two equations tends to zero. For simplicity, let us consider a holographic lens in one 
dimension having a spatial frequency

X = (7)A A0

which increases in the x-direction. The matrix equation relating x(z) and ^(z) on 
either side of the holographic optical element is then

x,

k

1
(8)

Analogously to a conventional glass lens, the holographic lens has rotational 
symmetry with its interference pattern perpendicular to plane o f incidence and 
diffracted rays.

4. Light distribution in terms of ray matrix elements
Let us consider an object plane placed in front of a holographic lens and illuminated 
with normally incident monochromatic plane wave, as shown in Fig. 1. The source 
plane and its conjugate are located at infinity and in the back focal plane of the lens.
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To find the amplitude distribution of the field across the output plane of the system, 
the Fresnel diffraction formula is applied. If the field amplitude transmitted by an 
object is represented by the function u0(x0, y 0), the output of the system [6] may be 
written as

wj ou

u i (*/> yi) = ~ T —  J  |  dxodyo  J  |  uo(xo> y o) exP [*2 7 - (xo + yo)
^ Z0Zl _oo

X exp [-i± (x0x +y 0 y)]  exp [if (-1 +1 - (x2 + / )

X exp { jz j '* 2'  + y2̂ \  exp ^X,X + y ,y^

(9)

dxdy

where the constant phase factor has been dropped since it does not affect the result in 
any significant way. Substituting the expression

1  = J_ + I  1
¿o zi f  

into Eq. (9), we obtain

u i (*/> y  i) = exP f a ? + y i ) \  J  J  uo(xo> yo),2A, Z 0  Z j 2 zQz , f

r kzA(f-Zj) 2 2 1 T kzA 1
X CXP L' ~2z0 zi f  + yo)\  CXP r ^ 7 , iX°  X' + y°  y ,')\  dx° dy°'

Introducing the following denotations

A = 1
/ ’

B = zo zi 1C = —— D = 1 -  —
f  r

the general quadratic phase transform [7] of an input distribution uQ (x0, y 0 ) to an 
output plane (x,,yj)  realized by the rotational symetrical holographic system to be 
described by a ray matrix (see Eq. (1)), can be written as

u i(xi>yi) = - ^ 2  J j Mo(xo.To)exp | / ^ [ z l ( 4 + >’o ) - 2(xo x/ + ToT/)]!

( 10 )
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The coefficients A, B, C, D are the elements of the ray matrix, where the element 
A is the factor affecting the phase in the integration variables at the input plane 
(x0,y 0 ), while the element D affects the phase at the output plane (* ,,> /); the matrix 
element C defines the optical power of the system and does not appear explicitly in 
Eq. (10), but element B describes deviation of the optical power (axial aberration). The 
optical system under consideration corresponding to ABCD matrix realizing ray 
transformation between the input and output planes can be implemented in free space 
by using a set of optical elements, either refractive or diffractive lenses. As we 
remember, the ray matrix of an optical system is the product of the transfer matrices 
describing the free space propagation and optical elements such as lenses, diffraction 
gratings, mirrors, etc.

When the condition f - z ,  = 0 is satisfied, then the first order Fourier transform 
of u0(x0, y 0) occurs in the back focal plane of the holographic lens as an expression 
of field distribution

uf ( xf ,yf)
1

exp
* . /

D̂Xf+$ ]  i i u°(x°’yo)

exp - i j .  (x0 xf + y 0 T/)]d*ody0.

Analogously, the p-th order fractional Fourier transform of the function 
u0(x0, y o ) *s defined as

Up(xi>yi)
i \ M x 2i + y 2i)

x2/ XP[ ' 2/ l tanO

oo

I  \ u 0(,x0, y 0) txv
-oo

M x o +y 2o) 
2/ ,  tan®

X CXP [“'̂ ¿® X' +  y° *>] dx° dy°

where the rotation angle ® of the Wigner distribution function is connected with the 
fractional order, viz.: ® = n p /2 .  For a special case p  = 1, and we obtain the 
conventional Fourier transform relation. The parameter = /s in ®  is an arbitrary 
focal length, and /  is the focal length of the lens. The ray matrix for a fractional Fourier 
transform setup can then be written in the form

A B cos® /s in 2®

C D 1 cos®
. /

In this case the system matrix is obtained by multiplying the matrices that represent 
the various optical elements within the system. The holographic lens that has a focal
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length /  and straight propagation sections of length z0 and zt are represented by the 
diffraction and translation matrices, respectively. Therefore we have

A B 1 z, a b 1
C D 0 1 c d 0 1 .

But for a lens: a = d = 1, b = 0, and c = -1  / / ;  hence

In the optical system that realizes a fractional Fourier transform the ray matrix 
elements A and D are always equal (A = D = cos<P). Therefore the input and output 
distances: z0, z, are equal, too; namely zQ = z, = /(1  -  coscD). If the input and 
output planes are conjugate planes, then the matrix element B is equal to zero making 
the integral (10) undefined. In this case, we can show only that the field distribution 
Ui(x„y,)  is proportional to distribution u0 (x0, y 0) in the input plane.

5. Conclusion

In this paper, an insight into optical implementation of Fourier transform is provided. 
It has been discussed how to simplify the calculations of relations between the 
amplitude distributions across the input and output planes of an optical system whose 
ray matrix is known. The diffraction integral is presented as a function of the elements 
of the ray tracing matrix for an optical system of diferent configurations.
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