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Computer-assisted modified coupled-mode method 
for multiple-perturbed single-mode 
polarization-maintaining fibres

Pa wel W ierzba

Technical University o f Gdańsk, Faculty o f Electronics, Telecommunication and Informatics, Department 
of Optoelectronics, ul. Narutowicza 11, 80-952 Gdańsk, Poland.

An extension to the modified coupled-mode method is presented, which allows the state o f 
polarization to be calculated for a general case of a multiply perturbed fibre. Being based on 
numerical solution o f coupled-mode equations, it can be used when an analytical solution o f the 
coupled-mode equations does not exist, or is difficult to obtain. The present method was developed 
as a design tool for polarimetric optical fibre sensors. Short computation time was achieved as a 
result o f modification to the solved coupled-mode equations.

1. Introduction

Modified coupled-mode method is a versatile tool for calculating the evolution of the 
state of polarization (SOP) along a single-mode fibre subjected to multiple 
perturbations, such as: transverse pressure, hydrostatic pressure, bending, Kerr effect, 
twist and Faraday effect. Since ellipticity of the fibre core and stress-induced 
birefringence can also be treated as perturbations, it is possible to apply this method 
to all types of single-mode polarization-maintaining (SMPM) fibres. A full account of 
the modified coupled-mode method can be found in papers [1] and [2]. Employing the 
theory presented therein, the SOP along the fibre can be expressed in an analytical 
form when perturbations acting upon the fibre are independent of the location z along 
it. In general case, however, an analytical description of the SOP does not exist.

The purpose o f this paper is to devise a method by which the SOP in every location 
z along the section of a fibre can be calculated for an arbitrary SOP at the beginning 
of that section. Section 2 gives an outline of the modified coupled-mode theory needed 
to formulate, in Section 3, its computer-assisted extension. Finally, in Section 4, the 
method proposed is applied to the calculation of visibility in a twisted elliptical-core 
fibre subjected to pure bending.

2. Theory

The electric field vector E of electromagnetic field propagating in a single-mode fibre 
subjected to perturbations can be written as
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E = [A(z)ex + B(z)ey\exp(j®t), (1)

where: A(z), B(z) -  complex amplitudes of electric field, ex, ey -  distribution of electric 
field components in the fibre cross-section, co -  the angular frequency of electric field. 
Amplitudes A(z) and B(z) depend only on fibre axis coordinate z. They also have to 
satisfy coupled mode equation
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where Ny are coupling coefficients. Values of coupling coefficients depend upon 
perturbations acting on the fibre in the manner discussed in [1]. When coupling 
coefficients are independent of z {i.e., Ny = const(z)), amplitudes A(z) and B{z) can be 
expressed as
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where A0,B 0-  amplitudes A(z) and B(z) for z = 0 (i. e., at the beginning o f the analysed 
fibre section) and my -  mode coupling coefficients, given by:
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When Ny are functions of z {i.e., Ny=Ny(z)), formulae (3)-(5) are no longer valid*. 
Even though amplitudes A(z) and B{z) can be calculated, by numerical solution of 
Eq. (2) for arbitrarily chosen A0 and B0, the process is time-consuming and it has to 
be repeated for every vector [A0, B0]T of interest.

*In some instances (e g., twisted elliptical core fibre) a coordinate system Çr|z exists, in which 
coupling coefficients Ny do not depend on z. Solution o f Eq. (2) can be found in this coordinate system 
using Eqs. (3)—(5) and subsequently expressed in terms o f xyz coordinates. For full account of this method 
the reader is referred to Section 5 o f [1]. However, it is impossible to apply this elegant method in a 
general case o f a multiply perturbed fibre.
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As it will be shown in the following section, mode coupling coefficients nty 
can be computed only once for a given z, by numerically solving a modified form 
of Eq. (2), and amplitudes A(z) and B(z) can be subsequently calculated for every 
[A0, B0]t without solving a differential equation.

3. Computer-assisted modified coupled-mode method

Equation (2) is a set of two homogenoeus linear first-order ordinary differential 
equations (ODE) with complex coefficients. With boundary conditions given in the 
form of
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equation (2) forms an initial value problem. Solution of it exists for every [A0, B0]T, 
and it can be expressed as a linear combination of two vector functions [>q(z)] and 
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where Ci and C2 are complex coefficients, [ y,(z)] and [ y2(z)] are solutions to 
relation (2) which can be calculated by solving Eq. (2) for two orthogonal boundary 
conditions [A0l, 5 01]r  and [A02, B02]T.

However, numerical solution of Eq. (2) is time-consuming. In most instances, the 
moduli of N u  and N22 are at least three orders of magnitude higher than |jV12|. A s a 
result Eq. (2) becomes a stiff equation (c f  [3]). Moreover, step size Az has to be lower 
than 100 nm, in order to achieve acceptable accuracy. From a physical standpoint, the 
necessity of using such a small value of Az is easily explainable. Functions A(z) and 
B(z) describe the amplitude and phase behaviour of electromagnetic field propagating 
in the fibre. Therefore, to obtain an accurate solution, step size Az has to be at least 
one order o f magnitude smaller than wavelength A of the field propagating in the fibre.

Computation time can be substantially reduced if following substitution into 
Eq. (2) is made:
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where C(z) and D(z) are complex functions of z. From the physical standpoint, 
substitution Eq. (8) can be explained in the following way. In an unperturbed fibre 
(Nn =N22 and jV21 = 0 ) propagation constant p equals (Nu +N22)/2. Therefore, the 
phase of electromagnetic field propagating in the unperturbed fibre is given by the 
exponential term in Eq. (8), i.e.:

exp I -7 i + ^22 (9)

and functions C(z) and D(z) are constant and equal A0 and B0, respectively. 
Perturbations acting on the fibre change coupling coefficients Ny. Therefore, the phase 
of electromagnetic field propagating in the perturbed fibre cannot be expressed only 
by term (9). As a result, C(z) and D(z), which are no longer constant, contain the 
correction term which accounts for the phase difference between its actual value in the 
fibre and our prediction expressed by Eq. (8).

After being rearranged, Eq. (2) becomes
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In order to obtain A(z) and B(z) for an arbitrarily chosen [A0, B0]T, C(z) and D(z) 
have to be calculated first. To avoid lengthy recalculation for every A0, B0 of interest, 
Eq. (10) is numerically integrated for two orthogonal boundary conditions: [0, l ] r  and 
[1, O f, yielding two functions [/^z)] and [f2(z)\. From linearity of Eq. (10) it follows 
that for every boundary condition [A0, B0f ,  which can be written as

[AQ,B Qf  = zi0[ l , 0 ] r  + 5 0[0, i f ,  (11)

the solution o f Eq. (10) can be expressed as a linear combination of /j(z) and f 2(z) 
with identical respective coefficients, i.e.:

[CXzXZKz)]7· = A0[ f f z ) ]  + B0[ f f z ) ] .  (12)

Therefore, functions [f\(z)} and [ / 2(z)] are calculated only once as C(z) and D(z) 
can be calculated for every A0 and B0, from Eq. (12), by multiplying [/i(z)] and [f2(z)\ 
by A0 and B0, respectively. Finally, amplitudes A(z) and B(z) are obtained by 
multiplying C(z) and D(z) by Eq. (9).

It is important to note that most of the time needed to calculate A(z) and B(z) is 
spent on solving Eq. (10). Subsequent processing, carried out according to Eqs. (12)
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and (9), is not time consuming, even if A(z) and B(z) are calculated in a considerable 
number o f points, and for many of boundary condition vectors.

For all weakly guiding fibres the following inequalities hold for i =1 and 2:

Inequality sign in Eqs. (13a, b) means, for these fibres, a difference of at least two 
orders o f magnitude. By comparing coefficient matrices of Eqs. (2) and (10), one can 
notice that the off-diagonal elements of both matrices are identical. Moreover, from 
Eq. (13a) and the accompanying comment, it follows that the absolute values of 
diagonal elements of the coefficient matrix in Eq. (10) are at least two orders of 
magnitude smaller that those o f diagonal coefficients in Eq. (2). Therefore, when 
numerical solution of Eq. (10) is performed, step size Az can be increased at least two 
orders o f magnitude, yielding a hundredfold decrease of computation time.

4. Analysis of a twisted elliptical-core fibre subjected to pure bending

The method introduced in the previous section will be used to calculate visibility at 
the output o f a section o f a twisted elliptical-core fibre subjected to pure bending, 
presented in Fig. 1. Formulae (3)-(5) cannot be applied in such a case because coupling 
coefficients N:J are functions o f fibre axis coordinate z.

Let us assume that light launched into the input of the analysed fibre from a 
monochromatic source (wavelength A. = 633 nm) excites both polarization modes with 
equal amplitudes, and that the phase difference 6 between polarization modes can vary

| t f „ - A y « |A y ,

|* 1 2 l « M · (13b)

(13a)

X Optical Fibre

Fig. 1. Section o f  twisted eiliptical-core fibre subjected to pure bending (<p -  initial twist angle, 4>, -  twist 
rate, R -  bend radius).
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over an interval greater than 2n radians (such conditions can be encountered, for 
example, in lead-out fibres of polarimetric optical fibre sensors).

Therefore, the normalized Jones vector describing the state of polarization at the 
input of the analysed section of the fibre can be expressed as

72
1

exp(-y'5)
(14)

where 8 -  phase difference between polarization modes. Note that because the axes of 
the elliptical core do not coincide with x and y  axes of the local coordinate system, the 
components of the Jones vector are amplitudes of polarization modes 0HE! j and eH E j,, 
rather than amplitudes of electric field components Ex and Ey.

Let us also assume that the core of the analysed section of fibre is made of fused 
silica doped with germanium, while the cladding is made of pure silica. Moreover, it 
is assumed that both materials are isotropic and follow Hooke’s law. Because the 
values of Young modulus and Poison’s ratio of these materials differ by less than 
0.1%, the analysed fiber is treated as a homogeneous structure, whose material 
properties are those o f pure fused silica, i.e., Young modulus E = 7.6 x l0 10 N/m2, bulk 
modulus G = 3 .2 7 x l0 10N/m2 and elastooptic constant C= 7.6><10-12 m2/N. These 
assumptions simplified the calculation of the coupling coefficients Ny, which was 
carried out by following the procedure given in [2], and using analytical expressions 
derived there and in [1] for the three perturbations of interest.

Finally, let us also assume that the fibre has beat length /¿ = 3 mm for 7. = 633 nm 
and that an ideal polarizer is placed at the end of the analysed fibre section, set at 45° 
to the major axis of the elliptic core of the fibre.

Visibility E is defined as in [4]

V Anax Anin 

Aiax An in
(15)

where 7max and 7mjn are the maximum and minimum intensities. Visibility at the 
output of the analysed fibre section is a function of bend radius R, twist rate <j>/ (defined 
as twist angle per unit length) and initial twist angle <p (defined as the angle between 
x axis and major axis of elliptic core, c f  Fig. 1). All three parameters were varied in 
order to investigate their effect on visibility. Along with changes of twist rate (j), and 
initial twist angle <p, the azimuth of the output polarizer was varied, so as to preserve 
the 45° angle to the major axis of the elliptic core of the fibre. As a result, calculated 
changes of visibility were caused only by the coupling of polarization modes 
propagating in the fibre, and not by misalignment of the polarizer.

First, visibility was calculated from formulae (3)—(5) as a function of cp, for the 
case of no twist (/'. e., twist rate <j>, = 0) for different R. This provided reference data for 
comparison with results obtained using the method presented in Section 3.



Computer-assisted modified coupled-mode method... 787

Second, two programs were written to perform analysis for <j>, #0. The first program 
calculates amplitudes A(z) and B(z) by integrating Eq. (2), while the second one uses 
the modified form Eq. (10) of coupled mode Eq. (2). The output of both programs is 
visibility V as a function of initial twist angle cp for a given bend radius R and twist 
rate (j>(. Both programs take advantage of linearity of integrated equations, solving 
them for two sets of boundaiy conditions, (cf. Eqs. (11) and (12)). The fourth order 
Runge-Kutta method was used in both programs, as it provides good accuracy and 
short computation time. The integration step was kept constant in order to avoid 
problems that may sometimes occur with adaptive step-size control algorithms. 
Moreover, detecting problems caused by numerical instability or by the choice of too 
long integration step Az, the total power of electromagnetic field was calculated in 
every step z,· from relations:

P(z,) = |zf(zi) |2 + |R(z,.)|2,

P (z ;) = |C (z,)|2 + p ( z , ) |2, (16)

for the first and second program, respectively. A quality factor r|, defined as

P(z,) -P{  0) 
P( 0)

(17)

was subsequently used to compare accuracy of solutions obtained for different step 
sizes.

Visibility was calculated for twist rate <t>, = 0, R = 6, 7 and 10 mm, using both 
programs and compared with results obtained from Eqs. (3)-(5). Initial twist angle cp 
was changed from 0° to 180° with a 2°-step. In both cases visibility values agree with 
each other within 10-4. Subsequently, integration step Az was adjusted to obtain the 
same values of quality factor p = 10-6, and comparison was made of execution times 
of both programs. The execution times of the first and the second program on a typical 
desktop PC were about 5400 s and 15 s, respectively. Therefore, the computing time 
is decreased over two orders o f magnitude, as a result of application of the method 
devised in the previous section, which confirms the prediction expressed therein. The 
ratio of execution times of both programs remained essentially constant in the 
calculations described below.

Following successful comparison of results obtained from Eqs. (3)-(5) with those 
from the program implementing method described in Section 3, visibility was 
calculated for various twist rates <)), and bend radii R. As the presentation of all results 
is beyond the scope of the current article and will be the subject o f another paper, 
selected results will be presented to illustrate some of the findings.

In order to determine the influence of low twist rates on visibility, for constant 
bend radius R = 7 mm, calculations were performed for twist rate <j>( in the range from 
0 to 20 rad/m and initial twist angle cp varied from 0° to 180° with a 2°-step. Since the
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Fig. 2. Visibility as a function o f  initial twist angle ip (-----twist rate 0 rad/m,----- twist rate 20 rad/m).

shape o f resulting visibility curves does not change much as a function o f twist rate <j>„ 
only curves obtained for ( ^ O  rad/m and <(>, = 20 rad/m are presented in Fig. 2. An 
interesting feature that can be seen in this figure is an increase o f minimal visibility.

To verify whether this phenomenon can be used to improve visibility in bent 
sections o f fibres, calculations were carried out for twist rate <|>, in the range from 
50 rad/m to 200 rad/m. Calculated visibility curves for 20 rad/m, 50 rad/m and 
100 rad/m are shown in Fig. 3. Interestingly, minimum visibility increases from 0.922 
for no twist, up to 0.971 for twist rate o f 50 rad/m, and then decreases again, falling 
to 0.959 for twist rate o f 200 rad/m. Moreover, as can be seen in Fig. 3, the shape of 
visibility curves for twist rates higher than 20 rad/m loses its regularity clearly visible 
for visibility curves obtained for lower twist rates (i.e., <J>, = 0 rad/m and <|>, = 20 rad/m) 
shown in Fig. 2.

Fig. 3. Visibility as a function o f  initial twist angle (p (----- twist rate 20 rad/m,------ twist rate 50 rad/m,
—  twist rate 100 rad/m).
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Even though the increase of minimum visibility is clearly visible, it is far-fetched 
to claim that the visibility can be improved by introducing controlled twist in the bent 
fibre. One should remember that some twist may exist in the fibre as a result of drawing 
process, which, adding to the controlled twist, may greatly decrease visibility instead 
of increasing it.

5. Conclusions

Presented in the paper computer-assisted modified coupled-mode method is a versatile 
tool for calculating the evolution of the SOP along a single-mode fibre subjected to 
multiple perturbations. Contrary to other approaches the method can be applied when 
coupling coefficients are functions of location z along the fibre.

Example of calculations illustrates the use o f the method for design o f a 
polarimetric optical fibre sensor. The present method does not restrict the length of 
analysed fibre section which can reach several meters. Moreover, speed at which 
calculations are performed can be increased by using another, more effective ODE 
solver featuring also adaptive step-size control.

The method can be further extended to provide results not only for the case o f a 
strictly monochromatic source, but also for sources such as light emitting diodes 
(LEDs) or superluminecent diodes (SLDs).
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