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Fine structure of heterogeneous vector field 
and its space averaged polarization characteristics
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Interrelation between the fine structure of the vector field and its averaged polarization
characteristics is considered. It is shown that space averaged Stokes parameters are defined by
dispersion of the phase difference (or dispersion of the polarization azimuth) at its saddle points.
At the same time the dispersion of the phase difference is directly related to averaged space between
the nearest adjacent component vortices of the same sign, which are associated with the different
orthogonal linearly polarized components. The dependence between the dimensions of areas
where considerable polarization changes occur and averaged space between the nearest adjacent
component vortices of the same sign is obtained. The results of computer simulation and
the experimental investigation are presented.
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1. Introduction

Historically, conventional polarization parameters such as Stokes ones and coherence
matrix [1, 2], which characterize a vector field were introduced for light beams, and
in particullar for incoherent light beams. Thus, a conventional approach to their
determination requires integration of measured values by the space coordinates and
time. The question arises of wether it is possible to introduce similar parameters for
each field point of the space and for each time moment? 

It is absolutely obvious that such an operation is rightful for completely coherent
waves [1, 3, 4]. Naturally, the coherence of monochromatic beam, to a greater or lesser
extent, decreases under the interaction with scattering object. But the large type of
objects characterized by single scattering practically does not destruct the coherence.
The beam coherence length after the scattering by such objects slightly diminishes
the relative coherence length of the beam of modern laser. Thin polymer films [5],
small parts of multimode fibers [6] are good examples of such objects. In other words,
though the field behind single scattering objects is formed as speckle one it remains
absolutely polarized due to the preservation of coherence. At the same time polarization
parameters, such as Stokes ones and coherence matrix, measured for a full beam will
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be similar to those of a completely or partially depolarized wave. This happens due to
different polarizations at each field point.

Thus, the conclusion can be drawn about some analogy between the behavior
of conventional parameters measured for partially coherent fields and similar space
-averaged ones measured for heterogeneous polarization fields. This follows from
the fact that exchanging the averaging-out by time for the averaging-out with respect
to space coordinates is possible [7]. Due to the linearity of the averaging operation
the averaged Stokes parameters, elements of coherence matrix, etc., are integrals
according to analyses square from corresponding local parameters.

The question arises of how such averaged parameters are related to the characteristics
of special structures of vector field like polarization singularities, field areas with
saddle points of polarization parameters, etc., which form some skeleton of the field
[4, 8–17] and define the field behavior at each point? In this paper, it has been
attempted to establish such relationships.

2. Space averaged Stokes parameters

Let us consider Stokes parameters  (i = 0, 1, 2, 3) obtained from experimental data.
It is well known [1, 2] that every Stokes parameter  may be obtained as some
combination of the corresponding measured intensity parameters

(1)

where  is a magnitude averaged over the photodetector square qf :

(2)

where Iik is a local intensity at some field point. It can be assumed (at least for paraxial
approximation) that averaging is carried out on infinitely large square, if the photo-
detector square qf is much greater than speckle dimension (qf >> )

(3)

It follows from Eqs. (1)–(3) that:

(4)

where si (x, y) is a local Stokes parameter.
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3. Analysis of polarization parameters of the field 
decomposed into linearly  polarized components

It is well known [1, 2] that si (x, y) may be represented by components of coherence
matrix:

(5)

Let us recall that  (Hermitian matrix). It follows from Eqs. (4) and (5)
that  is represented by averaged components of coherence matrix:

(6)

where k, l = 1, 2 correspond to x, y. It is known [1, 2] that

(7)

where  means averaging in time.
The averaging in time loses the sense if the vector field is coherent and completely

polarized. In this case,  (uk is the complex amplitude of orthogonal
component) and Jxy has the form:

(8)

where ax, ay, ∆ϕ are the amplitude modules and phase difference of the orthogonal
components, correspondingly.

Zeroes of the Jxy coincide with those components which are unambiguously related
to polarization singularities (s-contours and C-points) [11–13].

The averaged component of the coherence matrix  is described by the relation:

(9)
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which may be interpreted as maximum of the correlation function of the component
complex amplitudes. Note that the exp( j∆ϕ) is the fast oscillating function. The maximal
speed of the changes ∆ϕ is observed in the area of the zeroes of the Jxy (in the area
of component vortices), where the phases of components changed from 0 to 2π over
some small area including the vortex center. The a = axay is also minimal in this area
(either ax or ay → 0). The contribution of such regions to the result of (9) is minimal.
The areas of the stationary points of ∆ϕ (saddle points of the phase difference) make
the main contribution to Eq. (9). Equation (9) may be approximated by the method of
stationary phase [1].

The averaged component of the coherence matrix  may be represented in the form:

(10)

where  qi is the field region with one saddle point of the phase

difference.  may be transformed by stationary phase method to the relation:

(11)

where xi, yi may be defined as solutions of the following system:

(12)

These solutions ,  are the magnitude of the value at

the saddle point of phase difference. Then,  may be approximated by the relation:

(13)

where ai, ∆ϕi are mostly the random Gaussian magnitudes and ∆ϕi  may be centred:

∆ϕi = ∆ϕ0 + ∆i (14)
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where ∆ϕ0 is the primary phase difference of orthogonal components, ∆i is distributed
symmetrically about zero. The distribution density of ∆i is of the Gaussian type:

(15)

Correspondingly, the characteristic function has the form:

(16)

The sum (13) may be estimated as the sum of the random phasors [18].
Let us assume that the vector field is statistically isotropic and may be characterized

by correlation radius lcoh. After that we will chose the decomposition basis in such
a manner that

(17)

i.e., average intensities of the orthogonal components are the same.
Then,  (   – average intensities of orthogonal

components) due to the statistical independence of the components.
As follows from [18], ρ∆ (∆ ) is defined for symmetrical distribution densities by

the relation:

(18)

where r and i are the real and imaginary parts of the sum:

(19)

It follows from Eqs. (17)–(19), that:
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Then,

(21)

For the chosen decomposition basis, the Stokes parameters have the form:

(22)

where  – phase dispersion at the saddle points of phase difference, ∆Φ0 –
the primary phase difference of orthogonal components, for decomposition basis
chosen in such a manner that average intensities of the orthogonal components are
the same.

The parameters, normalized to unit, have the form:

(23)

Obviously, the inequality takes place, as it is true for the partly coherent
illumination [1]:
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The “integral depolarization” is observed 

(25)

The equality in Eq. (24) is fulfilled for  in the case of completely
homogeneously polarized field. As follows from (23), space averaged Stokes
parameters are defined by dispersion of the phase difference at its saddle points.

Note that  is related with a magnitude of an averaged space between the nearest
adjacent component vortices of the same sign lvor. The  and lvor are equal to zero
for completely correlated components (completely homogeneously polarized field).
If  increases, the lvor increases, too. The limit case is lvor = lcor for absolutely
integrally depolarized field. Thus, one can state that  is some function of the lvor.
This dependence may be obtained using data from the corresponding computer
simulation.

4. Computer simulation and experimental results

It is known that the field in the far zone Ud (for heterogeneous vector field also) is
a Furrier-transform of the field Uin, which is formed immediately after the scattering
object [19]. This statement is also satisfied for the orthogonal components of the field.
As can be shown for the formation of Ud field the Uin may be represented as a set of
point source with unit amplitude, random phase and positions 

(26)

where N is the number of the point sources, Φi, xi, yi are the phase and the coordinates
of the i-th point source, respectively. 

“Input” samples of point sources associated with different orthogonal components
are formed by an equal total number of point sources, but they differ by phases and
localizations of Nd sources. In this case, the components with equal intensities are
formed in the far zone and their correlation coefficient is defined by simple relation 

(27)

The level of “integral depolarization” D was chosen as polarization parameter
characterizing the averaged polarization characteristics of vector field. Note that the
field remains completely polarized at each point. It is known that when the condition

 is fulfilled, the integral depolarization is directly related to the correlation
coefficient γ  of the orthogonal components [1]:
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Thus, in our case, γ  characterizes the “integral” polarization of the field upon fulfilling
the condition .

The ratio lV of the space between the nearest adjacent component vortices lvor to
correlation length lcor, the maps of phase difference and averaged Stokes parameters
were calculated for different levels of integral depolarization.

Jxx Jyy=

Fig. 1. Dependence of the dispersion of the phase difference  of linearly polarized orthogonal
components on the ratio lV of the space between adjacent component vortices of the same sign to
the correlation length.

σ ∆
2

Fig. 2. Maps of phase difference between the linearly
polarized orthogonal components for 40% of field
“depolarization” for different primary phase differences:
∆Φ0 = π/2 (a), ∆Φ0 = 0 (b). For clearity, the phase
difference is presented within π. Phase differences, which
differ by ±π have the same color in the figure. Boundaries
between white and black colors are s-contours. Points at
which different color lines are converged correspond to
the vortices of the phase difference. The centers of x –
shaped areas are the saddle points of phase difference.

a

b
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Figure 1 shows the dependence of the dispersion of the phase difference  of
linearly polarized orthogonal components on the ratio lV of the space between adjacent
component vortices of the same sign to the correlation length. Figure 2 illustrates
the maps of phase difference for the various primary phase differences ∆Φ0 (0 and
π/2). Let us note that the behavior of phase difference does not depend on the primary
phase difference of orthogonal components, because the phase differences in both
cases differ in the constant value. As a consequence, only the change of the shapes,
dimensions and locations of s-contours is observed. At the same time the positions of
the saddle points and vortices of phase difference are stationary. It can be seen that
s-contours have smaller dimensions and they are practically all closed in the area of
figure in the case where primary phase difference equals half the ±π.

The results of computer simulation of the parameters of a vector field for
different correlation coefficients of the orthogonal components (different levels of
the field integral depolarization) are presented in Figs. 3 and 4. A circular primary
polarization of the vector field was chosen. In this case, the areas with considerable
polarization changes coincide with the areas bounded by s-contours [13].

There is a slight difference in the intensity distributions of the fields (see Fig. 3).
As can be seen from Fig. 4, the dimension of s-contours and averaged space between

σ ∆
2

Fig. 3. Intensity distributions of heterogeneously polarized fields (computer simulation). Intensity
distributions for 5% (a), 10% (b), 30% (c), 50% (d) depolarization of the field (correlation coefficients
of orthogonal linearly polarized components are 0.95, 0.9, 0.7, 0.5, correspondingly).

a b

c d
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the nearest adjacent component vortices of the same sign increase if the integral
depolarization increases. The s-contours are small (relative to the average speckle
dimension) simply connected areas of one kind (right-hand or left-hand) polarization,
when component correlation coefficient is grater than 0.5. These zones are
concentrated close to the component vortices. The dimension of s-contours
significantly increases and location of areas with considerable polarization changes
becomes random for the magnitude of the component correlation coefficient smaller
than 0.5.

5. Analysis of polarization parameters of the field 
decomposed into circularly polarized components

As is well known, the structure of x, y-components of the field depends on
the orientation of decomposition basis. In particular, in our case, the binding
requirement is the equivalence of the orthogonal component intensities. On the other
hand, it is known that the structure of the field orthogonal components does not depend

Fig. 4. Maps of the phase difference between the orthogonal linearly polarized components (computer
simulation). Phase difference between the components calculated for 5% (a), 10% (b), 30% (c), 50% (d)
depolarization of the field (correlation coefficients of orthogonal components are 0.95, 0.9, 07, 0.5,
correspondingly);  – x-component vortices,  – y-component vortices.

a b

c d
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on the orientation of basis, when the field is represented as a superposition of circularly
polarized components. In this case, the component phase difference is directly related
to the azimuth of polarization (see, for example, ref. [8]):

(29)

and the saddle points of phase difference are the saddle points of polarization azimuth.
The coherence matrix obtained by decomposition of the field to the circularly

polarized components has the form [2]:

(30)

where JRL(x, y) = AR ALexp( j2α), while AR and AL are the amplitude modulo of
the circularly polarized components. Matrix components are the random spatially
distributed values. In this decomposition basis localization of the phase difference
vortices coincides with the positions of C-points.

The Stokes parameters expressed by the elements of the coherence matrix have
the form:

(31)

The operation similar to algebra to the “linear” basis case leads to the following
relations of Stokes parameters:
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where   – averaged intensities of the left- and right-polarized components,
correspondingly, α0 – primary polarization azimuth,  – azimuth dispersion at saddle
points of polarization azimuth.

As for the linear decomposition basis, for the circular one the inequality follows:

(33)

The so-called “integral depolarization” is observed. The equality in (33) is fulfilled
for  in the case of completely homogeneously polarized field. It is seen from
relation (32) (which is similar to (23)) that the average Stokes parameters can be
defined on the basis of the measurement results of azimuth dispersion at its saddle
points. Oppositely, the azimuth dispersion may be obtained by simple calculations
using the measured Stokes parameters. Note that the dispersion of polarization azimuth
may also be represented as a function of space between the nearest adjacent component
vortices of the same sign lvor.

6. Comparison of experimental results 
and data of computer simulation

The Stokes parameters, the averaged space between the nearest vortices lvor and
correlation length lcor were obtained both by the computer simulation and experimental
testing. Thin polymer films were chosen in such a manner that the field depolarization
behind them practically coincided with the depolarization level, which were used
in the computer simulation. Experimental testing is carried out in the arrangement
presented in Fig. 5. Circularly polarized beam is directed to the Mach–Zander
interferometer. A single scattering object (thin polymer film) is put in one of the
interferometer arms. Polymer film is placed in the focus of the objective 10. This
location of scattering object provides formation of the “far” field just behind the
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Fig. 5. Experimental arrangement; 1 and 11 – λ/4 plates, 2 and 12 – beam-splitters, 3–5 – collimator,
6 and 7 – mirrors, 8 – microobjective, 9 – object, 10 – objective, 13 – analyzer, 14 and 15 – Stokes
polarimeter.
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objective 10. The Stokes polarimeter is put in the output of the interferometer for
measuring the averaged Stokes parameters of the beam. Circularly polarized reference
beam and polarizer 13 allow us to measure the positions and the signs of component
vortices by a method described in [17]. Thus, it becomes possible to simultaneously
measure the averaged polarization parameters and the obtain arbitrary linear

Fig. 6. Example of the interference pattern of some area
of the field, where V+ and V– are the component vortices
of different signs indicated by the opposite directed
interference forks.

Fig. 7. Location of vortices (computer simulation), which are associated with orthogonal linearly
polarized components for different levels of field “depolarization”. The numbers in the left upper corners
of each figure correspond to the level of integral depolarization; positions of orthogonal component
vortices: ,  – positive vortices, ,  – negative vortices.
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Fig. 8. Location of vortices (experiment), which are associated with orthogonal linearly polarized
components for different levels of field “depolarization”  obtained by experimental testing. The numbers
in the left upper corners of each figure correspond to the level of integral depolarization; positions of
orthogonal component vortices: ,  – positive vortices, ,  – negative vortices.

Fig. 9. Relationship of the depolarization level and the ratio of the space between vortices to correlation
length;  – experimental results,  – results of computer simulation. 
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polarized projection of vector filed, as well as to determine the location and the signs
of projection vortices.

Component vortices of different signs (see Fig. 6) may be identified from the
corresponding interference pattern as the opposite directed interference forks [20]. Sets
of networks with component zeros were obtained for different objects, which
corresponded to the different levels of integral depolarization, and average spaces
between the component vortices of the same sign were calculated.

Figures 7 and 8 represent the results of computer simulation and experimental
results for different levels of depolarization.

Figures 9 and 10 illustrate the comparison between these results. Figure 9
represents the relationship between the depolarization level and the space between
vortices. The dependence of Stokes parameters s2 and s3 on the space between vortices
of the same signs, associated with the orthogonal components is illustrated in Fig. 10.

It can be seen that these dependences are practically linear. A good correlation
between the results obtained by computer simulation and experimental investigation
is observed.

7. Conclusions

As a result of our research it has been established, that the characteristics of polarization
singularity, systems of special points (vortices of phase difference, C-points, saddle

Fig. 10. Dependence of Stokes parameters s2 and s3 on the ratio of the space between vortices of
the same sign, which are associated with linearly polarized orthogonal components to the correlation
length;  – experimental results,  – results of computer simulation (results obtained on the basis of
Eq. (23)),  – results of computer simulation (direct averaging of the local Stokes parameters).
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points of phase difference and polarization azimuth) define not only the qualitative
behavior of the vector field at each of its points but also are unambiguously connected
with its average polarization characteristics.

Dispersion of phase difference between the orthogonal components, which
corresponds to the different levels of the integral depolarization of vector field, is
a function of the average space between nearest adjacent component vortices of
the same sign, which are associated with different linearly-polarized orthogonal
components. Finally, averaged Stokes parameters, dispersion of the polarization
azimuth may be obtained by measuring the ratio of such average space to correlation
length.

The dimension of the area with considerable polarization changes is defined only
by the level of integral depolarization. While the dimension and localization of
s-contours for the level of depolarization less than 50% depends on the primary phase
difference. The dimension of s-contours is minimal if the primary phase difference is
equal to |π/2 |. For the level of depolarization over 50% the fine structure of the field
becomes similar to the structure of completely depolarized field and does not depend
on the primary phase difference between orthogonal components.
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