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Various methods for representation of electronic states in diatomic molecules basing on
experimental spectroscopic data are critically compared. The technique of pointwise inverted
perturbation approach (IPA) is indicated as the most suitable in case of states characterized by
potential energy curves substantially different from the Morse potential. Recent developments of
this technique are presented.
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1. Introduction 

Our understanding of the energy structure of diatomic molecules is based on the
Born–Oppenheimer approximation which takes advantage of the large disparity
between the electron and nuclear masses in order to separate the electronic and
nuclear coordinates. The motion of heavy nuclei can be assumed as slow compared
with that of light and consequently very mobile electrons. The electronic wave
functions adjust instantaneously to the positions of the nuclei and determine the
potential well in which the nuclei vibrate. For separate electronic configurations
diabatic potential energy curves governing the motion of the nuclei are thus obtained.
However, the diabatic curves can intersect whenever potential energies associated with
two different electronic configurations become equal for a given internuclear distance.
Depending on the strength of the coupling between the two electronic configurations,
the molecule passing through the crossing region may either remain in the original
electronic state or jump to the other configuration. In the latter case the coupling can
be taken into account by constructing the adiabatic potential energy curves, which
change from one electronic configuration to the other along the crossing. The shape
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of the adiabatic potential curves is governed by the famous non-crossing rule
formulated by VON NEUMANN and WIGNER [1, 2] which forbids crossing of curves for
states of the same electronic symmetry.

2. Methodology 

Both the diabatic and adiabatic representations can be introduced by more rigorous
definition of their properties. In the adiabatic picture the potential matrix is diagonal
whereas the operator of kinetic energy of the nuclei provides the coupling terms.
In the diabatic representation the potential matrix has off-diagonal elements which
couple different electronic configurations and the nuclear kinetic energy operator is
diagonal. It should be noted that vibrational eigenstates of neither the diabatic nor the
adiabatic potential curves exactly represent the “true” (that is observed) levels, as each
representation neglects some interaction matrix elements. Both representations are
physically equivalent but in a given problem one may be preferable to the other.
To choose an approach convenient for a specific case, Dressler introduced the so called
adiabacity parameter [3]:

 (1)

where the electronic matrix element coupling the diabatic states Hel is compared with
the vibrational constant ωad of the higher-energy member of the pair of the resulting
adiabatic states. If γ >> 1 (a strongly avoided curve crossing), the vibrations of nuclei
are well described in the adiabatic model and the nonadiabatic corrections to the levels
are relatively small. If γ << 1 (a weakly avoided curve crossing), the adiabatic
description fails and nuclei prefer to follow the diabatic potential curves. In the
intermediate case γ ≈ 1 there is a large vibronic mixing regardless of whether
the diabatic or adiabatic representation is chosen.

“Exotic” states of diatomic molecules are those characterized by (adiabatic)
potential energy curves whose shape is substantially different from the Morse
potential. Such states originate usually from interaction between the most common
valence states of a molecule with ion-pair states. At large interatomic distances
the diabatic valence states display a weak R dependence (usually with the R–6 term
as a leading one) resulting in relatively shallow potential wells. In the ion–pair states
the Coulombic interaction leads to much steeper potentials (behaving as R –1) and
therefore diabatic curves of both types cross frequently. However, when switching to
the adiabatic description, the non-crossing rule results in serious distortions of potential
shapes and may lead to adiabatic potentials with barriers towards dissociation, unusual
bends or shelves as well as double or even multiple minima. Such a behaviour is
exemplified in Fig. 1 on selected adiabatic potential energy curves calculated for
the NaK molecule [4]. For the sake of completeness it must be noted that potential
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barriers may arise also in well separated states due to an interplay of long-range
electronic and exchange forces [5].

For description of regular electronic states with Morse-like potentials it has been
customary to express the energies of rovibronic levels by molecular constants as:

 (2)

where Λ stands for the quantum number of the electronic angular momentum about
the internuclear axis. The same expansion can be written in a more compact form
as a Dunham series:

(3)
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Fig. 1. Theoretical adiabatic potential energy curves for selected  states in NaK molecule (solid
curves) [4]. Dashed curves represent diabatic potentials corresponding to the two lowest  ion-pair
states.
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The molecular constants Te, ωe, ωe xe , ... or Dunham coefficients Yjk are determined
by a fit to the set of measured energies of rovibrational levels. (Note that although
the Dunham coefficients with k > 1 are not independent variables [6], in most
applications all the coefficients in (3) are treated as independent parameters.)
The number of parameters used depends on the accuracy of measurements. This may
be illustrated by a recent study of the ground state of Rb2 molecule, represented by as
much as 62 constants [7], most of them of little physical significance. However, the
required number of coefficients depends even more on the actual shape of the potential
and becomes unacceptably large for potentials much different from the Morse
potential. In addition, this method of description is not feasible for exotic molecular
states, e.g., with double-well potentials.

A more direct and physically sounder way of reducing spectroscopic data is based
on representation of the investigated molecular state directly by its potential energy
curve V(R). Such a curve can be determined conveniently by the Rydberg–Klein–Rees
(RKR) technique [8], based on the semiclassical first-order Wentzel–Kramers–Brillouin
method. One of the main advantages of this technique is that no special assumptions
about the mathematical form of the potential are made. Instead, the experimentally
known energy levels are used to calculate points on the potential curve corresponding
to the classical turning points of the nuclear motion. These points determine the potential
energy curve up to the highest observed vibrational energy level.

Although widely used, the RKR method has some well-known drawbacks. First,
as a semiclassical procedure it cannot provide highly precise results for systems with
small reduced masses such as light hydrides [9]. Further, it is known to produce
accurate potential energy curves for lower parts of potential wells but numerical
instabilities and errors tend to appear for levels near dissociation limits [10].
Finally, the RKR algorithm is incapable of dealing with potentials providing more
than two classical turning points (e.g., double minimum potentials). For such cases
fully quantum-mechanical procedures are preferable. In the analytical approach, some
functional dependence U(R) of the potential is assumed including a number of
adjustable parameters. The energies of rovibrational levels in the given electronic
state are calculated then by solving the radial Schrödinger equation with U(R).
The parameters are subsequently optimized to generate energy levels matching
the experimental term energies. A large number of model potentials, majority of them
derived from the Morse function, were proposed in the past [11, 12] but they were not
sufficiently flexible to represent a real interaction potential with high accuracy except
over a fairly narrow region of R. Recent years have brought considerable progress in
this approach, notably the potential of SAMUELIS et al. [13]
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or the modified Lennard–Jones potential by SETO et al. [7]:

(5)

where β (z) is a polynomial in z = (R – Re) / (R + Re). These expressions have been
applied successfully for potentials with regular shapes achieving high accuracy with
a few fitting parameters. Until now, however, no reasonable analytical function was
proposed to represent potentials with double wells or shelf regions.

A different philosophy has been adopted by KOSMAN and HINZE [14] in their
inverted perturbation approach (IPA). They noticed that if the sought potential U(R )
is represented as an initial trial potential U0(R ) plus a perturbation δU(R ), then δU
can be obtained from an expression for first-order energy correction well known in
perturbation theory but used in an inverse manner, namely to find an unknown
perturbation from known energy corrections. In the original realization of the IPA
method, the correction δU(R ) was expressed as a linear combination of some
orthonormal functions fi (R ) (e.g., the Legendre polynomials with an exponential
cutoff [15]):

(6)

whereas an RKR potential was chosen as the initial guess. The coefficients ci were

found then by minimizing , where  is the eigenenergy

calculated with U0(R) and δEυJ denotes the energy correction associated with δU(R),
obtained within the first-order perturbation theory. The problem was thus reduced to
solving an overdetermined system of linear equations for ci (since usually one has more
experimental term values to fit than ci coefficients needed for adjusting the potential
energy curve) which can be done in the least squares approximation sense. However,
once δU(R) is found it is rather ambiguous how to add the analytical correction to
the initial pointwise RKR potential. Moreover, it turned out that often the correction
cannot be well described by Legendre polynomials or, in fact, by any expansion of
the type (6), as it would require summation of unacceptably large number of terms [16].

This limitation seriously narrowed the usefulness of the IPA method, because there
was a particular need for employing it in cases of exotic potentials. Therefore recently
we have proposed a modification of this procedure [17], in which the corrections to
the approximate potential as well as the potential energy curve itself are defined as sets
of points connected with the cubic spline function. Thus, we represent the molecular
potential by a set of M grid points {Rk , Uk} and the values Uk are fitting parameters.
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We have shown that in this case the potential itself and the correction δU can be
expressed as linear combinations of known functions Sk(R ) [17, 18] with coefficients
being the corrections to the potential at the grid points:

(7)

(8)

Moreover, the formulae for the corrected eigenenergies EυJ become

(9)

Replacing here EυJ with  provides a set of N linear equations (N denotes
the number of experimentally observed levels {υ, J}) with M unknowns (where M
is the number of fitted parameters, M < N), which should be solved in the least squares
approximation sense. The proposed form for function U(R) and its correction δU(R)
is very flexible and allow to represent a variety of potential energy functions, including
the exotic ones. In comparison with the analytical representation the additional
advantage is the relatively low degree of correlation between the fitting parameters,
which leads to faster convergence of the fitting routine. A fast convergence results also
from the fact that it is relatively easy to provide a good initial guess for the fitting
parameters. The initial Uk can be taken from RKR or ab initio potentials where the
uncertainties usually range from a few percent to a few tens percents. In contrast to
this, the values of the coefficients used in analytic representations of potential curves
are highly correlated and can vary significantly from one iteration to another or when
changing the total number of fitting parameters. Besides, the low degree of correlation
for the pointwise representation permits direct analysis of the reliability of the
determined potential curve since the solution of the system (9) provides standard errors
of the corrections δU and consequently of the generated potential curve at the grid
points Rk. 

Since the system of Eq. (9) is usually ill-conditioned, as an effective way for its
solution the singular value decomposition (SVD) technique [19] has been chosen.
Within this method the overdetermined system (9) is solved by minimizing the merit
function χ2 with a constraint that parameters on which the fit depends only weakly are
not adjusted. As in our case the fitting parameters are the values of the corrections to
the potential, the set of poorly determined parameters may be interpreted as regions
of the potential energy curve which are insufficiently characterized by the experimental
data. In effect, the SVD method ensures that the corrections are made to the potential
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energy curve only in the energy range covered by the data, whereas the other parts of
it remain nearly unchanged.

The procedure discussed above and nicknamed “the pointwise IPA” has been put
into effect in a package of computer programs which are now commonly available [17]
and were applied by us to thorough studies of electronic states in alkali dimer
molecules. On the experimental side, we investigate excited electronic states
accessible in one photon transitions from the ground states of homo- and heteronuclear
alkali dimers, using the polarization labelling spectroscopy method [20]. This
technique surmounts elegantly the difficulty of resolving and analysing highly
congested molecular spectra. With a proper choice of frequencies and polarization of
two independent laser beams, interacting with a given molecular sample, only
transitions from a few known rovibrational levels in the ground state are observed,
resulting in spectra with easily resolved and understandable rotational structure.
Several of the electronic states studied by us have been characterized by exotic
potentials. In most cases the adiabacity parameters for these states were substantially
greater than one thus allowing their adiabatic description, at least to a good
approximation. The double minimum  state in Na2 (γ ≈ 29) [21] and its analogues
in K2 (γ ≈ 12) [22] and Li2 (γ ≈ 3) [23] may serve as illustrative examples (Fig. 2).
For all three states the potential curves constructed basing on the IPA method
reproduce energies of the observed rovibrational levels with an accuracy comparable
to the experimental precision (dimensionless standard errors σ of 0.7, 1.0 and 3.0,
respectively). We believe that growing differences between the observed energy levels
and those calculated from the constructed potential energy curves are not due to
deficiencies of the IPA algorithm but rather they reflect the increasing inadequacy of

21Σ u
+

Fig. 2. The experimentally determined potential energy curves of the  states in Na2 [21], K2 [22] and
Li2 [23] molecules (solid lines) and their companion  states (dashed lines) resulting from avoided
crossing of diabatic potential curves.
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the adiabatic model when γ  approaches unity. A similar problem has been encountered
for the double minimum 61Σ + state in NaK (γ ≈ 2.1) [24] or, even to a larger extent,
for strongly coupled 31Π  and 41Π  states in KLi [25]. In the latter case the quantum
mechanical energy eigenvalues of the generated IPA potential reproduce the
experimental energy levels with an accuracy 3–6 times lower than the experimental
uncertainty. In this context a question may be raised whether the adiabatic potential
curves are still physically meaningful in cases of strong interaction between states,
like here between the 31Π  and 41Π.  Under such circumstances our approach is purely
utilitarian: we work within the adiabatic approximation as long as the generated
potential curves reproduce the positions of the (great majority of) of rovibrational
levels in a given state with accuracy sufficient to be helpful in assignment of
the observed spectra. Fortunately, in some cases the existing experimental data allow
for a global description of the mutually interacting states, as in the case of the B1Π  and
C1Σ + states of KLi molecule [26]. Here the states were successfully described (σ = 1.0)
in a model including two IPA potential curves of the unperturbed states plus a few
constants which parameterize the coupling terms. The energy levels were obtained
then by diagonalization of the matrix of the model Hamiltonian taking interaction of
both states into account. Other examples of successful application of the pointwise
IPA algorithm, which we would like to mention here, is our study of the  “shelf ”
state in Li2, where the IPA procedure has proved the existence of a shallow second
minimum in the molecular potential, unobservable by spectroscopic methods [27], and
construction of potential curve for the D1Π state in KLi with a potential barrier to
dissociation, based on observation of all vibrational levels supported by the potential
well [28]. 

The examples listed above indicate that the pointwise IPA method, being model-free,
imposes principally no limitation on the shape of the fitted potential energy curve. But
the pointwise approach has also disadvantages following from its model-free nature.
The method works well for the parts of a potential covered by abundant experimental
data (that is energies of rovibrational levels). However, when the experimentally
determined energy levels are scarce, the inversion problem becomes ill-conditioned
and its solution may become unstable, producing irregularities in a form of unphysical
wiggles on the constructed potential curve. This is often pointed as the major
disadvantage of the pointwise representation, compared to the analytic ones [7, 13].
In fact the ill-conditioning of the problem does not imply that a meaningful
approximate solution cannot be found, but an extra care has to be taken to obtain
a physically acceptable result. The SVD method chosen by us for solving the system
of linear equations (9) offers a partial remedy. Also a sensible choice of a sparse grid
for the pointwise potential in the regions poorly characterized by experimental data
can flatten it to some extent. Recently we have proposed a simpler and more
effective procedure, based on an additional constraint which imposes desired
smoothness on the constructed potential [18]. 

F1Σ g
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A typical way to obtain a smooth fitted function f (R, a) (a stands here for a set of
fitting parameters) is to add to the merit function χ 2(a) a regularizing functional
H(a) responsible for the smoothness of the solution and to minimize the sum
χ 2(a) + λ2H(a), where parameter λ is used to tune the degree of regularization. Since
in our version of the IPA method the fitted potential is defined as a cubic spline
function connecting grid points {Rk, Uk}, we define the regularizing functional as

(10)

where U''(Rj, U) denotes the second derivative of the potential (defined by its grid
values U = {U1, U2, ...}) in a grid point Rj. Minimizing H(U) of such a form sets the
second derivatives of the potential close to zero, and consequently its shape becomes
close to a straight line. It can be shown [18] that U'' is a linear function of the fitting
parameters Ui and the regularization condition is equivalent to supplementing the
system of linear equation (9) by a set of additional M equations

, j = 1, 2, ..., M (11)

Here Lji are the known numerical coefficients [18] and  denotes the initial value of
the i-th fitting parameter. When λ = 0, the system of Eq. (9) remains unchanged, that
is no regularization is imposed. Increasing λ results in flattening of the potential by
competition of conditions defined by (11) and (9). In general, the value of λ can be
different at different grid points (i.e., can depend on j ), varying from zero for parts of
the potential with abundant experimental data to a large value for regions poorly
characterized by the experiment. It must be noted that close to the potential minimum
the expression for H (U) cannot be represented by (10) because the potential is
essentially non-linear in this range. Instead H (U) may be taken in the form

(12)

In this case by minimizing H(U) one sets the third derivative of the potential close to
zero, and consequently the potential close to a parabola. 

The method described above has been used for construction of the potential of
the double minimum  state in Na2 molecule [18]. Our experimental data consisted
of 277 energies of levels located in the inner well, allowing us to find the detailed
shape of this well, and only 55 levels observed in the region above the potential barrier,
additionally all of them corresponding to a narrow range of rotational quantum
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numbers. As the outer potential well was accessible in our experiment only through
them, determination of its shape presented a particularly ill-posed problem. In general,
fits without regularization led in this case to unphysical oscillations in the outer
potential well, i.e., in the region poorly characterized by the experimental data (Fig. 3),
providing dimensionless standard error of the fit σ = 0.76. The same figure shows the
result of a fit based on the same data field but including regularization of the potential
curve. The parameter λ was taken as 0.015 for R > 8.5Å and fixed to zero for lower
internuclear distances, in order to switch regularization only in the region related to
scarce experimental data. It can be seen that the potential becomes smooth and of
physically reasonable shape with only a negligible decrease of the quality of the fit
(σ = 0.82).

3. Concluding remarks

In conclusion, the pointwise IPA method has proved to be a powerful tool for
determination of accurate potential energy curves for electronic states of diatomic
molecules, including potentials with exotic shapes where the traditional methods are
not applicable. It is possible to extend the pointwise potential to the region of large
internuclear distances, as discussed in [29, 30], thus enhancing capabilities of
the method in determination of dissociation energies and dispersion coefficients,
as well as in modelling of properties related to collisions of cold atoms and formation
of cold molecules (scattering lengths, Feshbach resonances, etc.). The method allows
to generate potentials even for coupled electronic states. In this case the respective
eigenvalues can be treated as zeroth approximation energy levels and the
corresponding wave functions are used to evaluate the matrix elements of the coupling

Fig. 3. The shape of the outer well of the Na2  state potential constructed with the pointwise IPA
method without regularization (dashed line) and with regularization (λ = 0.015 for R > 8.5Å; solid line).
The whole potential curve is shown in the inset.
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operators. Alternatively, nonadiabatic effects caused by sufficiently weak interactions
between molecular states can be “absorbed” by the constructed effective potential
curves. It is worth noting that our version of the IPA method is now in use by several
research groups [23, 29, 31–34] and becomes gradually a standard tool in
spectroscopic investigations.
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