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The cross-spectral density function of a multi-Gaussian Schell-model vortex (MGSMV) beam prop-
agating through slanted atmospheric turbulence was derived, and the influences of the MGSMV
beam parameter and slanted atmospheric turbulence on the spreading properties of a MGSMV beam
are studied. One can find that a MGSMV beam propagating in slanted atmospheric turbulence can
evolve into the flat-topped beam, and a MGSMV beam with larger index N and topological
charge M propagating in slanted atmospheric turbulence will lose the dark hollow center and evolve
into the Gaussian beam more slowly than the MGSMV beam with smaller index N and topological
charge M. It is also found that a MGSMV beam propagating in slanted atmospheric turbulence with
larger strucutre parameter C will evolve into Gaussian beam faster, but the influences of zenith
angle α on the spreading properties of MGSMV beam in the far field can be ignored.

Keywords: average intensity, vortex beam, multi-Gaussian Schell-model source, atmospheric turbulence,
slanted path.

1. Introduction

With the development of the free-space optical communications, the propagation prop-
erties of laser beam in turbulent medium have attracted the attention of many researchers
in past years. Until now, the influences of turbulent medium on the propagation prop-
erties of various beams have been studied, such as partially coherent beam [1], random
electromagnetic multi-Gaussian Schell-model vortex beam [2], vortex beam [3], four
-petal Gaussian beams [4], partially coherent four-petal Gaussian vortex beams [5],
flat-topped vortex hollow beam [6], partially coherent crescent-like optical beam [7],
radial phased-locked partially coherent anomalous hollow beam array [8], spectrally
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partially coherent Gaussian–Schell model pulsed beam [9], array beam [10–12], par-
tially coherent anomalous elliptical hollow Gaussian beam [13], Airy beam [14], par-
tially coherent electromagnetic Gaussian–Schell model pulse beams [15], flattened
-vortex beam [16], partially coherent Hermite–Gaussian beam [17], J(0)-correlated
partially coherent beam [18], single photon [19], Laguerre–Gaussian beam [20], general
multi-Gaussian beam [21], twisted rectangular multi-Gaussian Schell-model beam [22],
radially polarized multi-cosine Gaussian–Schell model beam [23], multi-Gaussian
Schell-model vortex beam [24], and square multi-Gaussian Schell-model beam [25], etc.
However, the propagation properties of a multi-Gaussian Schell-model vortex
(MGSMV) beam propagating in slanted atmospheric turbulence has not been reported.
In this paper, the cross-spectral density function of a MGSMV beam propagating
through slanted atmospheric turbulence was derived, and the spreading properties of
a MGSMV beam propagating in slanted atmospheric turbulence were investigated.

2. Propagation of a MGSMV beam 
in slanted atmospheric turbulence 

In the Cartesian coordinate system, the laser beam propagating along the z-axis, the
cross-spectral density function of a MGSMV beam at the source plane L = 0 can be
expressed as [24, 26]

(1)

with

(2)

where W(r10, r20, 0) is the cross-spectral density function of a MGSMV beam at the
source plane L = 0, r0 = (x0, y0) is the position vector at the source plane L = 0, N is
the beam index of multi-Gaussian Schell-model source, M is the topological charge,
and σ are the spatial coherence length.

Based on the extended Huygens–Fresnel diffraction principle, the cross-spectral
density function of a partially coherent beam propagating through slanted atmospheric
turbulence at the propagation distance L can be expressed as [17–20] 
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(3)

with 

(4)

where ρ0 is the coherence length of a spherical wave propagating in slanted atmospheric
turbulence, and which can be expressed as

(5)

where  is the refractive index structure parameter of slanted atmospheric tur-
bulence, and α represents the zenith angle. The  can be expressed as [27, 28]

(6)

where v = 2.1 m/s is the rms wind speed, C is the structure parameter of atmosphere
turbulence at the ground.

Submitting Eq. (1) into Eq. (3), and considering the following integral equations [29]:
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(9)

The cross-spectral density function of a MGSMV beam propagating in slanted at-
mospheric turbulence can be derived as

(10)

where

(11)
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(12)

with

γ = x, y (13)

(14)

(15)

The intensity of a MGSMV beam propagating in slanted atmospheric turbulence
at the receiver plane L can be expressed as

I(r, L) = W(r, r, L) (16)

3. Numerical results and analyses

In this section, the spreading properties of a MGSMV beam propagating in slanted at-
mospheric turbulence are studied by using the equations derived in the above section.
The parameters of MGSMV beam and slanted atmospheric turbulence are chosen as
w = 1 cm, λ = 532 nm, M = 1, N = 5, σ = 5 mm, C = 1.5 × 10–14 m–2/3 and α = π/4
without other explanations in captions of following figures. 
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Fig. 1. Three-dimensional normalized intensity of a MGSMV beam propagating in slanted atmospheric
turbulence: z = 100 m (a), z = 300 m (b), z = 500 m (c), and z = 2000 m (d).

1.0

0.8

0.6

0.4

0.2

0.0
2

0

–2 –2

0

2

2

0

–2

N
o

rm
a

liz
e

d

y [cm]

x [cm]

a
in

te
n

si
ty

y 
[c

m
]

x [cm]

20–2

1.0

0.8

0.6

0.4

0.2

0.0
3

0

–3 –3

0

3

3

0

–3

N
o

rm
a

liz
e

d

y [cm]

x [cm]

b

in
te

n
si

ty

y 
[c

m
]

x [cm]

30–3

1.0

0.8

0.6

0.4

0.2

0.0
4

0

–4 –4

0

4

4

0

–4

N
o

rm
a

liz
e

d

y [cm]

x [cm]

c

in
te

n
si

ty

y 
[c

m
]

x [cm]

40–4

1.0

0.8

0.6

0.4

0.2

0.0
15

0

–15 –15

0

15

15

0

–15

N
o

rm
a

liz
e

d

y [cm]

x [cm]

d

in
te

n
si

ty

y 
[c

m
]

x [cm]

150–15



Spreading properties of a multi-Gaussian Schell-model vortex beam... 89
The 3D normalized average intensity of a MGSMV beam propagating in slanted
atmospheric turbulence is illustrated in Fig. 1. From Fig. 1, one can find that the
MGSMV beam propagating in slanted atmospheric turbulence at the short propagation
distance can keep the initial dark hollow center produced by the M (Fig. 1a); the dark
hollow center will disappear during the propagation distance increasing (Fig. 1b). At
a certain propagation distance, the MGSMV beam will evolve into a flat-topped beam
(Fig. 1c), and this phenomenon is introduced by the multi-Gaussian Schell-model
source. At last, the MGSMV beam will evolve into the Gaussian beam in the far field
(Fig. 1d). From previous reports [28], it is also found that the flat-topped beam prop-
agating in turbulent media will evolve into the Gaussian beam in the far field.

To investigate the influences of MGSMV beam parameters N, M  and σ  on the spread-
ing of a MGSMV beam propagating in slanted atmospheric turbulence, the cross-sec-
tions of normalized intensity of a MGSMV beam propagating in slanted atmospheric
turbulence at different propagation distance for different N, M and σ are given in
Figs. 2–4, respectively. From Fig. 4, one can find that the MGSMV beam with larger N
will lose the dark hollow center and evolve into the flat-topped beam more slowly than
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Fig. 2. Cross-sections of normalized intensity of a MGSMV beam propagating in slanted atmospheric tur-
bulence for different N ; z = 100 m (a), z = 300 m (b), z = 600 m (c), and z = 2000 m (d).
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Fig. 3. Cross-sections of normalized intensity of a MGSMV beam with N = 4 propagating in slanted at-
mospheric turbulence for different M ; z = 100 m (a), z = 300 m (b), z = 500 m (c), and z = 3000 m (d).
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Fig. 4. Cross-sections of normalized intensity of a MGSMV beam with N = 4 and M = 2 propagating in
slanted atmospheric turbulence for different σ ; z = 600 m (a), and z = 3000 m (b).

σ = 5 mm
σ = 10 mm
σ = 

σ = 5 mm
σ = 10 mm
σ =  



Spreading properties of a multi-Gaussian Schell-model vortex beam... 91
the MGSMV beam with smaller N (Figs. 2b and 2c). As the propagation distance in-
creases, the MGSMV beam with different N will all evolve into the Gaussian beam,
and the beam with smaller N will evolve into the Gaussian beam and spread faster, but
the beam with different N will have the similar beam spot in the far field (Fig. 2d). It is
found from Fig. 3 that the MGSMV beam with large M will have a larger beam spot
with a larger dark hollow center (Fig. 3a). As the propagation distance increases, the
MGSMV beam with smaller M will first lose the initial beam profile and evolve into
the flat-topped beam (Fig. 3b); and the MGSMV beam with the larger M will gradually
evolve into flat-topped beam and the Gaussian beam as the propagation distance increas-
es (Fig. 3d). In the studies of σ  on the spreading of the MGSMV beam, it is found that
the MGSMV beam with smaller coherence length σ  will evolve into the flat-topped beam
faster than the beam with larger coherence length and fully coherence beam (Fig. 4b).

In order to study the influences of slanted atmospheric turbulence parameters C
and α on the spreading of a MGSMV beam propagating in slanted atmospheric turbu-
lence, Figs. 5 and 6 show the cross-sections of normalized intensity of a MGSMV beam
propagating in slanted atmospheric turbulence for different C and α, respectively. From
Fig. 5, it is found that a MGSMV beam propagating in slanted atmospheric turbulence
with larger C will lose the initial dark hollow and evolve into Gaussian beam faster,
and the beam propagating in slanted atmospheric turbulence with smaller C will also
evolve into the flat-topped beam (Fig. 5b). In the studies of the influences of the zenith
angle α on spreading properties, it is found that a MGSMV beam propagating in slanted
atmospheric turbulence at the same propagation distance with smaller α will lose the
dark hollow center more rapidly, but the influences of the zenith angle α is not an ev-
idence (Fig. 6a). In the far field, one can find that a MGSMV beam propagating in
slanted atmospheric turbulence for different α at the same propagation distance will
have the same beam spot (Fig. 6b). Thus, the influences of the zenith angle α on the
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Fig. 5. Cross-sections of normalized intensity of a MGSMV beam propagating in slanted atmospheric tur-
bulence for different C; z = 300 m (a), and z = 3000 m (b). 
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MGSMV beam can be ignored in the far field, because it is different from the other
beam propagating in slant atmosphere [30].

4. Conclusions

In this paper, the spreading properties of a MGSMV beam propagating in slanted at-
mospheric turbulence have been analyzed by using numerical examples. It is found
that a MGSMV beam propagating in slanted atmospheric will lose the initial dark hol-
low center and evolve into a flat-topped beam as the propagation distance increases;
and the MGSMV beam with larger N and M will lose the dark hollow center and evolve
into the Gaussian beam more slowly than the MGSMV beam with smaller N and M.
It is also found that a MGSMV beam propagating in slanted atmospheric turbulence with
larger C will lose the initial dark hollow and evolve into the Gaussian beam faster. How-
ever, the influences of the zenith angle α on the spreading properties of the MGSMV
beam in the far field can be ignored.
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