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Sharp images ensure success in the object detection and recognition from state-of-art deep learning
methods. When there is a fast relative motion between the camera and the object being imaged dur-
ing exposure, it will necessarily result in blurred images. To deblur the images acquired under the
camera motion for high-quality images, a deblurring approach with relatively simple calculation
is proposed. An accurate estimation method of point spread function is firstly developed by per-
forming the Fourier transform twice. Artifacts caused by image direct deconvolution are then
reduced by predicting the image boundary region, and the deconvolution model is optimized by
an α-confidence statistics algorithm based on the greyscale consistency of the image adjacent col-
umns. The proposed deblurring approach is finally carried out on both the synthetic-blurred images
and the real-scene images. The experiment results demonstrate that the proposed image deblurring
approach outperforms the existing methods for the images that are seriously blurred in direction
motion. 

Keywords: image deblurring, fast motion camera, confidence goal optimization, fast Fourier transform,
high-railway defect detection.

1. Introduction

Image acquisition is one of the most ubiquitous activities in the information society.
As the camera motion during exposure time may degrade the quality of acquired im-
ages, image deblurring is an important process in machine vision systems, such as for
car-mounted camera, unmanned vehicle, cell phone camera and a variety of industrial
inspection cameras [1]. Image deblurring methods differ in their performances, blur
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types, robustness and precision [2, 3]. Each method has its own specialty as well as
limitation, and there is no solution yet to uniformly address all these issues. Since the
serious blur problem is common in the fast motion shooting such as the rail-defect de-
tection system, it is urgent to solve the motion blur for image acquiring system. 

When a camera detection system moves along the object at a high speed, the acquiring
images would be blurred due to various factors, such as camera motion, defocusing,
and atmospheric turbulence under low-lighting conditions. With stable camera system
and adequate light source, the exposure in a long time makes the camera sensitive to
the motion, which may result in visibly blurred images [4–6]. Therefore, the motion
blur is a common incentive to the image degradation in camera motion systems. 

Most of the existing methods consider a blurred image model as the convolution
of an unknown original image with an unknown point spread function (PSF). Usually,
the blind-image deconvolution is conducted by an unknown PSF, which makes the
deblurring process too complicate to recover the original image from the only blurred
image [7]. A motion deblurring method is proposed with two steps that estimate the PSF
and optimize the deconvolution for a sharp image. 

To obtain an accurate PSF, the spectral stripe projection and the fast Fourier trans-
form (FFT) are combined with the ability of the spectrum to suppress additive, signal
-independent, Gaussian observation noise [8, 9]. Then the blurred image is decon-
volved by the Richardson–Lucy (RL) method [10] after obtaining the PSF, but the
direct deconvolution of the RL will appear in artifacts at the restoration image. Thus,
we construct a prediction boundary to promote the convergence of the deconvolution,
and an α-confidence goal optimized model to reduce the artifacts. 

2. Related research

It has been proposed to reconstruct sharp images from blurred ones in various existing
algorithms of image deblurring. The non-blind image deblurring techniques are such
as RL deconvolution [10], Wiener filtering [11], and regularized methods [12]. The
RL method restores noise-free or small-noise blurred images based on Bayes’ theorem
at first. The direct deconvolution of the RL method will appear in artifacts at boundaries
or near edges, so various boundary-condition-based deconvolution methods have been
proposed to reduce boundary artifacts in the image deconvolution [13, 14]. The Wiener
filter estimates an ideal image with the minimum-mean-square error from a blurred
image with the random noise. The regularized methods can minimize the least-squares
error between the estimated images and true ones with a certain degree of the image
over-smoothness. 

Recently, blind-image deblurring has attracted a lot of attentions [2, 15]. For the
blind deblurring, both of the PSF and the original image should be estimated from a single
blurred image. Existing blind-image deblurring methods can be roughly divided into
two categories, variational Bayes (VB) [2, 16] and maximum a posteriori (MAP) [17].

The VB methods consider all possible solutions instead of the most probabilistic
option, thus these methods are time-consuming. The MAP methods seek the most plau-
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sible solution by maximizing the posterior probability using a single global descriptor.
The main disadvantage of the MAP is that a blurred image exhibits Gaussian charac-
teristics to a certain extent, which leads to ineffective global minima. Therefore, im-
proved methods are constantly proposed in papers.

For motion image deblurring, LEVIN et al. [17] estimated the PSF with a priori
knowledge of the natural image gradient obeying the Laplacian distribution to build
the MAP framework. KRISHNAN et al. [16] constituted a normalized sparsity measure
and then estimated the PSF and the sharp image through the scale-invariant regulari-
zation. XU et al. [18] proposed a generalized and mathematically sound L0 sparse ex-
pression for motion deblurring. SUN et al. [19] analyzed the non-uniform motion blur
with a deep learning approach. HAN and KAN [20] calculated the blur kernel by the half
-quadratic penalty method and obtained a restoration image by the alternating direction
method of multipliers (ADMM).

The above-mentioned deblurring approaches were investigated under different sce-
narios and assumptions, that is to say, different deblurring models should be construct-
ed according to different blur types.

3. PSF estimation

Motion deblurring techniques are oriented toward modeling the degradation image as
the convolution of the original image and the PSF, thus applying the inverse process
in order to recover the original image. In the blind-image deconvolution, both the PSF
and the original images are unknown, and these unknowns must be estimated from a sin-
gle blurred image. The relation between the blurred images and the original ones can be
modeled in two dimensions as follows:

(1)

where b(x, y), h(x, y) and g(x, y) represent the blurred image, the PSF and the original
image, respectively. The symbol * is the convolution operator, and n(x, y) is the random
noise. The goal of image deblurring is to recover g(x, y) from b(x, y) without the spe-
cific knowledge of h(x, y). As the motion blur, h(x, y) can be constituted by blur di-
rection θ and blur length L as follows [6, 8, 17]:

(2)

With Fourier transform, Eq. (1) can be rewritten as

(3)

where B(u, v), G(u, v), H(u, v) and N(u, v) represent blurred image, original image,
PSF and random noise, respectively. 
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3.1. Estimation of the motion-blur direction

The PSF can be estimated by the Hough transform, the steerable filter methods, or the
Radon transform [8, 9, 21]. To find the blur direction, there are some methods like Radon
transform, Hough transform or any other orientation extraction methods. The Radon
transform can accurately predict the motion-blur direction from the experiments, even
at long blur lengths. Thus, the Radon transform is chosen for the blur direction detection.

3.2. Estimation of the motion-blur length

There are widely used methods [21, 22] to estimate the blur length, such as cepstral,
bispectrum and Radon transform. CHANG et al. [9] estimated the blur parameters by
inspecting the zero crossings in the “central slice” of the bispectrum, which shows that
bispectrum is less variant with noise in comparison to cepstral. WANG et al. [22] cal-
culated the distance between two adjacent dark strips with the bilinear interpolation
method for a subpixel-level blur length. The above two methods estimated blur param-
eters using Fourier transform once, and the estimated precision is not enough. There-
fore, to enhance the precision is urgent especially in the serious blur. By performing the
FFT twice can obtain the obvious character, thus the improved approach is as follows.

After finding the motion direction θ, the direction can be processed in the horizontal
direction by rotating angle θ. Assuming the motion is mostly composed of the trans-
lational movement and the distance from the camera to the object is constant, therefore,
a forward-direction motion model can be built as follows:

(4)

When the motion direction is along the x direction (horizontal), the Fourier trans-
form of the PSF is 

(5)

There are obvious multiple peaks after performing the Fourier transform on images,
as shown in Fig. 1d but not in Fig. 1b, which depicts the spectrum distribution of the
original and the blurred images of Lena, respectively. This character was adopted in
the previous methods [9, 22], although it is not very obvious, and the estimation of the
blur lengths may have some errors from experiments. Thus, we perform the FFT once
more for the precise blur estimation.

Then H(ω) transforms to h*(x)

(6)
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The fifth order Fourier series expansion of h*(x) in the range (–π/L, π /L) is ex-
pressed as,

(7)

For obtaining further obvious character, Eq. (7) is converted into Eq. (8) by per-
forming the Fourier transform again, it becomes

(8)

H *(ω) produces values at the integer multiples of 2L, and the others are zeros from the
H *(ω) function. Meanwhile, this result is verified by executing the FFT again on
Fig. 1d. Figure 2 depicts these outcomes with different blur lengths. The values ob-
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Fig. 1. Fourier frequency spectrum of the original and the blurred images of Lena. 2D FFT of the original
image (a), and its column-cumulative of greyscale projection (b). 2D FFT of the blurred image (c), and
its column-cumulative of greyscale projection (d).
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tained from the Fourier series expansion of Eq. (8) are consistent with the experimental
results obtained from Fig. 2, which proves that the results obtained by the FFT twice
are correct and reliable. Comparing with Fig. 1d for the unobvious peaks distribution,
Fig. 2 owns the regular pulses distribution especially in the large blur lengths (as shown
in Fig. 2c). Then, this obvious pulse character can be easily used to estimate the blur
length, especially the large blurs. 

Figure 2 shows regular pulse signals, which locate at the positions corresponding
to integer multiples of blur lengths. Thus, the distance between the adjacent pulses is
a half of the corresponding blur length. 

4. Image deconvolution and α-confidence goal optimization

4.1. Boundary prediction model

It is described that the deblurring image can be acquired with the deconvolution if the
PSF is known, however the direct deconvolution of real blurred images will result in ar-
tifacts, as shown in Fig. 3d, because the deconvolution is an ill-posed problem [1–3].
Artifacts often appear as wavelike patterns parallel to sharp discontinuities. YUAN et al. [23]
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Fig. 2. Regular distributions of the blurred images with different blur lengths: 10 pixels (a), 50 pixels (b),
and 100 pixels (c).
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assumed that such light and dark ripples appear mainly due to Gibbs phenomena.
SHAN et al. [24] concluded that the artifacts are caused by the observed image noise
and the PSF estimate errors, instead of the Gibbs phenomena.

To analyze the cause of the artifacts in Fig. 3d, a lot of comparison experiments
have been performed in research. Because a black border appears along sides in the
synthetic convolution image such as in Fig. 3a but not in the real image such as in
Fig. 3c. The regions outside the boundary in Fig. 3a were assumed to contribute no
signals to the synthetic convolution process. In practice, however, there are signals ap-
pearing in the real image boundary such as in Fig. 3c. Thus, the deconvolution directly
of the real image shows more artifacts than the synthetic image [25–28].

Consequently, a suitable image boundary block is predicted before deconvolution
at the left and the right image borders, namely S1, M × L(x, y) and S2, M × L(x, y), as described
in Algorithm 1 (see page 193). Therefore, the calculation dimensions of deconvolution
are reduced from M × N to 2 × M × L, since the blur length L is far less than the image
width N. Meanwhile the variables S1 are reduced, and the convergence of the decon-
volution is accelerated.

4.2. Optimization algorithm

It is apparent that the greyscale between adjacent columns in nature sharp images show
the greater consistency and less difference from the greyscale statistic, because most na-
ture images have spatial correlation with similar greyscale values in most neighboring

Fig. 3. Artifacts of synthetic and real image deconvolutions. Synthetic blurred image by convolution (a),
direct deconvolution image from a (b), real image (c), and direct deconvolution image from c (d).
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c d
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pixels [16, 17]. However, this nature statistic feature is different in the blurred image,
thus an image restored model based on this statistic feature is proposed as follows.

First, an index of squares sum of the adjacent-column greyscale-difference is de-
scribed as 

(9)

where Ci (x) is the greyscale at the i-th column and the x-th row.
In reality, the consistency and the difference coexist in adjacent pixels of the nature

sharp image, but the image with artifacts is different with this feature, therefore this
feature is described as the quality assessment index of the deconvolution image by the
confidence level. Confidence level quantifies the level of confidence that the parameter
lies in the interval [29, 30]. In this paper, the α-confidence is used as the credibility of
adjacent columns in the image greyscale. Then, given the confidence mean α and error
permissible value k, Nα is a set of the rest pixels that exclude α% pixels in every column
of the whole image,

(10)

The adjacent column-consistency measure (ccm) function is

(11)

The column-consistency measure (CCM) index of the whole image is given by

(12)

Thus, the deconvolution optimization is transformed to a goal optimization with
M × L dimension, and the optimal model is 

(13)

Algorithm 1 (see page 193) can optimize the deconvolution image with the α-con-
fidence goal optimization, where the inverse process is based on the RL algorithm. In
Algorithm 1, the parameter β is the synthetic weight of image gradient and linear es-
timation, its experience value is between 0.2 and 0.8. According to experiments, we
chose the value of β as 0.6.

Experiment results depend on the initial value to some extent, since the optimized
model is a high-dimensional and nonlinear matrix. The initial value is selected accord-
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ing to the image convolution principle of blurring process. During the image convo-
lution process, two image boundary blocks with the same length as the blur length are
generated on both sides of the original image. Those boundary blocks is the initial value
of the model calculation. Therefore, the initial value of variable S1 is adjusted to
achieve the best restoration automatically by combining the gradient with a linear es-
timation in Algorithm 1. The initial value of model is the initial value of the image
gradient and the linear accumulation. The initial value of the gradient is the pixel dif-
ference of adjacent columns, i.e., bi, j + 1 – bi, j , and the initial value of the linear accu-
mulation is jbi, 1/L. 

Algorithm 1. Image restoration based on the α-confidence goal optimization.
Input: blurred image b, blur length L

j < L;

j < L;

while CCM > ε do

j < L;

j < L;

 RL algorithm

;

end while
Output: deblurred image 

5. Experiment results

The blur length is first obtained by the FFT method, then the deconvolution model is
optimized by the α-confidence method. In the experiment, this two-step image deblurring
approach is verified with synthetic and standard images. It is also tested with the blurred
images acquired from our rail-defect-detection system. It is demonstrated that this two
-step deblurring approach can restore the image even with the serious motion blur.

5.1. Synthetic and standard images deblurring

The original image of Lena with the resolution of 1024 × 1024 pixels is shown in
Fig. 4a. This image was degraded with serious blur by synthetic convolution in Fig. 4b.
We have compared many deblurring methods codes by the authors and their best re-
sults. Figure 4 lists several deblurring results with the relatively good visual quality.
Parameters of our α-confidence method are set with a unilateral confidence mean of
α = 0.01 and an error permissible value k = 0.04. Our two-step deblurring approach
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acquires the sharp image details with fewer artifacts than the alternatives, as shown
in Fig. 4.

Moreover, the robustness of our α-confidence method under different blur param-
eters is compared in the Table, and the blurred images with 2% noise added. The image
restoration quality is demonstrated by comparing the quality assessment indexes of the
restored images and the blurred images. The quality assessment indexes such as the
root mean squared (RMS) error, the signal to noise ratio (SNR) and the peak signal to
noise ratio (PSNR) are employed to assess the restored image quality. Under normal
circumstances, the higher values of the SNR and the PSNR indicate a better image qual-
ity, and the RMS value is the opposite. From these indexes, our α-confidence method
can restore images with better results even with large blur parameters. It is shown in

a b c

d e f

Fig. 4. The comparison of different deblurring methods. Original (a), blurred (b), ALMEIDA and
FIGUEIREDO [14] (c), XU et al. [18] (d), ZHANG et al. [7] (e), and ours (f ).

T a b l e. Blurred and restoration image quality with different blur parameters. 

θ L [pixels]
Blurred images Restoration images

RMS SNR PSNR RMS SNR PSNR

0° 5 5.565 1.881 33.222 1.112 9.423 47.212

3° 25 7.601 1.370 30.513 2.085 5.024 41.750

10° 50 7.826 1.323 30.260 2.532 4.137 40.061

15° 75 7.830 1.316 30.167 2.664 3.932 39.621

30° 100 7.861 1.308 30.033 2.745 3.816 39.359
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the Table that the quality of the restored images is obviously better than the blurred
images.

In Fig. 5, our α-confidence restoration method is compared with other standard
methods using the Matlab image restoration toolbox. The PSNR is used as the assess-
ment of the image restoration quality, and the blur lengths set between 0 and 100 pixels.
Experiment results obtained with different methods reveal that the PSNR values of the
Wiener filtering method are better than that of the RL method at the medium blur
lengths. Restoration results obtained by the Wiener filtering method, however, are not
consistent across all tested lengths. The blind-image deconvolution method produces
worse results than the Wiener filtering method and the RL method. The PSNR values
of the regularized method remain unchanged with different blur lengths, thus, its
sensitivity is the lowest of these methods. Therefore, the restoration quality with our
α-confidence deblurring method is significantly higher than the other methods from
the PSNR values in Fig. 5.

5.2. Application in fast motion deblurring

The proposed two-step deblurring approach is then tested on real images of resolution
of  2048 × × 1024 pixels from our rail-defect-detection system [5, 6]. The camera sys-
tem is attached to the inspection car with stabilization system and adequate light source.
However, some of the acquired images show blurring due to the fast forward motion
of the camera system, and the blurred ones are shown in Fig. 6. 

The image in Fig. 6a is a blurred one from the inspection system with challenged
blurs. Compared to other methods, our two-step deblurring approach obtains the sharp
image as in Fig. 6f. Details from the enlarged image (see from the upper right corner
in Fig. 6) show that our two-step approach can restore sharp boundary details better
than other methods. 

For the further verification, million blurred images were collected from our inspec-
tion system, and these images are deblurred by the proposed approach. It shows that
if images are with small blurring, there is no significant difference of the deblurred
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Fig. 5. Comparison of restoration quality with varying blur lengths and different methods. 
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image quality between our proposed approach and other methods. But for the serious
blurring images, our proposed approach is better than others.

6. Conclusion

A two-step deblurring approach was proposed to restore the motion blur images, espe-
cially the serious blur ones, which has been applied to deblur the fast motion degraded
images. A routine with two times of FFT was presented. The theoretical derivation and
the experiment results show that the method can acquire an accurate estimation of blur
lengths even in large blurs. The boundary prediction and the α-confidence optimized
methods were proposed for removing artifacts in the restored image, since the directly
deconvolution of the real-image yields artifacts. Subjective visual perception and ob-
jective evaluation indexes of the image quality all indicate that our two-step deblurring
approach can effectively improve the quality of motion blur images. The proposed im-
age deblurring approach has been applied to our rail-defect detection system, and it
can also be applied to other similar forward motion image deblurring.
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