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In this paper, by modifying defects in a photonic crystal lattice, a two-dimensional photonic crystal
horn antenna is designed. The photonic crystal used for this purpose is composed of a hexagonal
lattice of circular holes in a dielectric slab. The results of this paper allow us to design a photonic
crystal antenna capable of separating TE and TM modes. The designed structure has a very simple
design that allows low cost fabrication. The structure is numerically simulated using a finite-dif-
ference time-domain (FDTD) method. Its wide bandwidth, its low loss and the ability to transmit
waves at a terahertz frequency range are the antenna’s main advantages. The return loss for the fre-
quency range of 180 to 215 THz is from –6.63 to –28.3 dB. Moreover, a 35 THz bandwidth is ob-
tained for this structure.
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1. Introduction

Photonic crystal-based structures are widely used for design of radiative structures.
The dielectric constant of photonic crystals is periodic in one, or two, or three dimen-
sions. One of important features of these structures is the banned electromagnetic band
for a frequency range which is referred to as the optical bandgap [1–4]. 

Nanotechnology opens the door towards a new communication paradigm that intro-
duces a variety of novel tools. It enables engineers to design and manufacture nanoscale
electronic devices and systems with substantially novel features [5]. These devices can
cover radio frequencies from the terahertz range and beyond, up to optical frequencies.
The integration of nano-devices can lead to the design of nano-networks with a plethora
of potential applications in the biomedical, industrial, environmental and military
fields. Nevertheless, nano-networks are not just considered a mere downscaled version
of conventional networks. The classical communication paradigms need to undergo
subtle revisions before being applied to such scenarios [6]. Up to date, enabling the
communication among nano-devices is still a challenging issue. The miniaturization
of classical antennas in order to meet size requirements of nano-devices requires using
very high frequencies, which results in significant propagation loss. Moreover, the in-
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trinsic behavior of metals can be different at the nanoscale dimensions. Thus, common
assumptions in the antenna theory such as the ideal perfect electric conductor (PEC),
may not hold in nanoscale dimensions [7].

Photonic crystals are one of the platforms that can be used for designing optical com-
ponents. These structures allow for the confinement of optical pulses and control of light
emission in very small and compact spaces [8]. In recent years, various photonic crystal
components have been designed which can be used in optical communication. These
include optical filters [9, 10], optical multiplexers [11], optical switches [12, 13], optical
interconnects [14], imaging devices [15], optical sensors [16] and optical gates [17–19].
The combination of photonic crystal structures with plasmonic or graphene devices
creates a variety of new possibilities [20–22].

Photonic crystal structures have long been used for the transmission of electromagnetic
waves and they are widely used in optical telecommunications. These periodic struc-
tures are usually simulated using a finite-difference time-domain (FDTD) method [23].
There are many articles on this topic, which have compared the results of experiments
with simulations. The accuracy of the simulation results in these articles assures us that
the FDTD results are close to experimental results [24–28]. As mentioned above, the
two-dimensional slab photonic crystal structures can be analyzed and simulated by nu-
merical methods such as FDTD. In this paper, the RSOFT software is also used for
analysis and FDTD simulations. As previous studies show, it can be said that the design
and simulation results in this paper will be in agreement with the experimental results. 

This study has shown the possibility of design and fabrication of 2-D photonic crys-
tals antennas with specified frequency-dependent transmission. The results of this paper
allow us to design a photonic crystal antenna capable of separating TE and TM modes.
The separation of TE and TM modes can be achieved by appropriately designing the
photonic crystal waveguides and the photonic crystal lattice structure. The horn struc-
ture reduces the return loss of the waves.

There are some methods proposed in the literature to increase the bandwidth of
photonic crystal waveguides and splitters [29–31]. The first use of photonic crystal-based
structures in antennas was for increasing the antenna’s radiation efficiency [32], which
triggered the widespread use of photonic crystal-based structures for antennas and tele-
communications devices. By introducing defects in the photonic crystalline structure,
a resonator can be created, which is used in crystal-based antennas in either one [33],
two [34] or three [35] dimensions. They can also be used to remove the interactional
and destructive couplings between the antennas [36]. As a result, antennas with high
efficiency and directionality can be obtained. In recent years, EBGs and PBGs have
been highly used in order to improve the radiation characteristics of antennas [37–42]. 

The first photonic crystal horn antennas were presented in [43, 44]. The idea was
later expanded, as functional structures were designed in three dimensions [45–50].
Considering these and the preceding issues mentioned above, photonic crystal-based
antennas have been considered by researchers in recent years. Furthermore, various an-
tennas are designed with different applications for different uses. The integration of such
antennas with other components paves the way for future all-optical systems [51–53].
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Horn antennas for transverse electric (TE) waves have not been designed yet. Here,
the antenna is designed for TE modes using a dielectric slab in which circular holes
are etched. Furthermore, parametric studies on changes in antenna length and antenna’s
aperture angle, as well as the type of arrangement of the elements are performed. By
determining the photonic crystal structure, the possibility of propagating waves with
minimal loss is investigated. 

2. Photonic crystal-based horn antenna design

2.1. Waveguide array design

First, the photonic crystal structure is designed using a square array of holes with a radius
of 0.4a. Here a is the lattice constant. In this structure, we need to etch holes in a dielectric
slab with a dielectric coefficient of 11.56 according to Fig. 1. The first step to design
a suitable waveguide is to compute the bandgap of the photonic crystal. The Brillouin
zone of the optical bandgap of the photonic crystal is indicated in Fig. 2. The waveguide
modes associated with Fig. 1 are depicted in Fig. 3a. As shown in Fig. 3b, a single
mode exists for the normalized frequency range of 0.25 to 0.29 (a /λ).

We next examined the optical group index to investigate the light emission in the
photonic crystal waveguide structure. Figure 3b shows a part of the propagation mode

Fig. 1. The photonic crystal waveguide designed by removing a row of holes. 
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Fig. 2. The Brillouin zone for the photonic crystal structure depicted in Fig. 1.
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of Fig. 3a, which is marked with the dashed line. Figure 3c shows the optical group
index. This figure shows that the speed of light is four times higher.

2.2. Designing the photonic crystal-based horn antenna

In the following, to design the photonic crystal horn antenna, the structure of the photonic
crystal waveguide, as shown in Fig. 4, is designed with periodic photonic crystal struc-

PC bandgap

0.30

0.28

0.26

0.24

0.22

0.20

0.18

0 π/a
kx

F
re

q
u

e
n

cy
 (

ω
a

/2
π

c 
=

 a
/λ

)
a

N
o

rm
a

liz
e

d
 f

re
q

u
e

n
cy

 (
a

/λ
)

0.30

0.29

0.28

0.27

0.26

0.25

0.24

b c

0 0.05 0.10 0.15 0.20 0.25

Wave vector k (2π/a)

Fig. 3. Transitional electrical mode inside the photonic crystal-based waveguide. Mode propagated within
the waveguide (a). Part of the propagation mode that is placed within the band gap (b). Optical group index
of waveguide structure (c).
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tures, with a two-dimensional dielectric slab with a dielectric coefficient of 11.56.
The air holes in dielectric slab are marked in red. As mentioned earlier, at the output
of the horn antenna, is placed on an air slab. The wave propagates in the air after passing
through the antenna. It is necessary to calculate the photonic bandgap of the photonic
crystal structure. Then we calculated the TE modes, which expand in photonic crystal
waveguide.

With this method, we design a suitable waveguide for wave propagation, and we
can use a photonic crystal horn antenna by applying changes to the layout of arrays,
which gives us good scattering parameters. Figure 5 shows the antenna return loss be-
cause for antenna aperture angle α changes which is from 0 to 50°. Figure 6 shows
a return losses average for different α values.

Figure 7 shows the return loss for α = 50°, which has the best result for the photonic
crystal horn antenna. In Fig. 8, it has been shown that the return losses from 180 to
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Fig. 5.  Return loss of the horn antenna for different values of antenna aperture angle α for the antenna as
shown in Fig. 4.
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Fig. 6.  Return loss average for different values of antenna aperture angle α for the antenna as shown in Fig. 4.
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215 THz are less than –10 dB which provided the bandwidth 35 THz with an average
return loss of –28.3 dB.

After investigating the angle of the antenna, the length of the antenna was exam-
ined. By changing the length of the antenna, the results of the return loss and other
antenna transmission parameters were changed. Figure 9 shows the photonic crystal
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Fig. 7. Antenna return loss for α = 50°.
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horn antenna that has been investigated by the parameter Δy (antenna outlet length).
By study this parameter, we reach a linear relationship between the antenna length and
the return loss. As the antenna length increases, the return loss decreases. As the length
of the structure of the photonic crystal horn antenna increases, the path loss and return
losses increase. The antenna should be considered in an optimal length, so that the an-
tenna power output is acceptable and the return losses will be reduced. The result of
this review is below. Figure 10 shows the return losses of the photonic crystal horn
antenna for Δy = 16a and Δy = 6a. Figure 11 shows the average return losses for dif-
ferent values of Δy.

Given the tools available to the fabrication of photonic crystal structures, we inves-
tigated the accuracy of the fabrication and the impact of fabrication errors by adopting
different values for the hole radius size in numerical simulation. Figures 12 and 13 show
different values of return losses for different values of the hole radius. These figures
clearly show that the amount of return losses will have acceptable tolerances.
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Fig. 10. Antenna return loss in Δy = 16a and Δy = 6a for the antenna as shown in Fig. 9.
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Fig. 11. Average return losses of the antenna in different values of Δy for the antenna as shown in Fig. 9.
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According to the results of the return losses of the designed photonic crystal structure,
the amount of losses will be very small. The amount of return losses in the optimized
state is –28 dB. 

We then developed the photonic crystal horn antenna for the hexagonal lattice,
whose results are summarized below. The results obtained from this structure revealed
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Fig. 14. Photonics crystal horn antenna with hexagonal lattice.
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that the square grid is more suitable for this structure. Although we were faced with
a reduction in return losses, the return losses were higher compared to the square grid.
The photonic crystal horn antenna with a hexagonal lattice is shown in Fig. 14. In ad-
dition, the radius of air holes shown in red is 0.4 mm. The basic slab is made of die-
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Fig. 15. Bandgap diagram of hexagonal structure shown in Fig. 14.
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lectric with a dielectric coefficient of 11.56. In Fig. 15, the band gap diagram of the
photonic crystal structure for the hexagonal lattice is indicated, and the transverse elec-
tric waveguide mode that extends within the waveguide is shown in Fig. 16. The results
of the return losses relative to the angles of the antenna are shown in Fig. 17, and Fig. 18
shows the return losses of the antenna with the hexagonal lattice for the two values of
β at 0° and 50°.

3. Conclusions

In this paper, the possibility of design and fabrication of 2-D photonic crystals antenna
has been investigated. The results of this paper allow us to design a photonic crystal
antenna capable of separating TE and TM modes. The separation of specific TE and
TM modes is achieved by appropriately designing the photonic crystal waveguides and
the photonic crystal lattice structure. The horn antenna structure increases the transmis-
sion power and reduces the return losses of the waves. Designed structure has a very
simple design that allows low cost fabrication and low tolerance. It also transmits op-
tical waves in a wide frequency range while still being simple. Photonic crystal horn
antenna is designed for transverse electric waves for the first time. Using the photonic
crystal horn antenna, the return losses average in a simple waveguide for the frequency
range 180 to 215 THz was –6.63 to –28.3 dB. Moreover, that 35 THz bandwidth was
obtained for this structure. In this paper, three parameters of the antenna such as an-
tenna length, antenna aperture angle and the photonic crystal lattice of elements were
investigated, and the results indicate that this structure is suitable for wave transfer.
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