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Diabetic macular edema (DME) is the dominant reason of diabetic visual loss, so early detection
and treatment of DME is of great significance for the treatment of diabetes. Based on transfer learn-
ing, an automatic classification method is proposed to distinguish DME images from normal im-
ages in optical coherence tomography (OCT) retinal fundus images. Features of the DME are
automatically identified and extracted by the pre-trained convolutional neural network (CNN),
which only involves fine-tuning the VGGNet-16 network without any user intervention. An accu-
racy of 97.9% and a sensitivity of 98.0% are acquired with the OCT images in the Duke data set
from experimental results. The proposed method, a core part of an automated diagnosis system of
the DME, revealed the ability of fine-tuning models to train non-medical images, allowing them
can be classified with limited training data. Moreover, it can be developed to assist early diagnosis
of the disease, effectively delaying (or avoiding) the progression of the disease, consequently.
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1. Introduction

With the high-speed development of medical imaging technology, medical image pro-
cessing and analysis has entered the era of big data. Extracting useful knowledge from
a large amount of medical image data provides more sufficient basis for the diagnosis
and scientific research of clinical disease, and has become a research focus in academia
and industry. The visibility of the internal structure of the retina makes it possible to
diagnose a variety of human fundus diseases, including age-related macular degener-
ation (AMD) and diabetic macular edema (DME), which are among the most irrevers-
ible causes of vision loss in the elderly and diabetes, respectively [1]. 

Optical coherence tomography (OCT) is an imaging technique that captures high
-resolution three-dimensional images of biological tissue. In particular, complex spectral
optical coherence tomography (CSOCT), produces images without parasitic mirror com-
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ponents [2]. One of its applications is to obtain retinal OCT volume, which can be em-
ployed to diagnose retinal diseases and treatment plans [3]. OCT image classification
has also been investigated [4, 5]. These findings have important implications for the use
of OCT images automatically screening and the development of computer-aided diag-
nostic tool. The figure above is a retinal OCT image of a DME subject with geograph-
ically atrophic and fluid (Fig. 1b) and a retinal image of a normal subject (Fig. 1a).

It is shown that there are few reports on the application of DME screening based
on deep learning algorithms. Some traditional image analyses demand manual devel-
opment of a convolution matrix applied to images for edge detection and feature ex-
traction. In recent studies, many computer automation systems implemented DME
grading with image processing techniques using segmentation and foveal detection of
retinal fundus image secretions [6, 7]. Among them, NAYAK et al. presented a method
relied on the detection and segmentation of macular exudates to detect and assess the
severity of DME [6]. GIANCARDO et al. proposed an automatic scoring system in view
of bleed probability map and wavelet decomposition [8]. A method can be introduced
by the extraction of morphological features: the location of the secretions was segmented
with mathematical morphology to calculate the distance between the macular secretions
and the center, applied to assess the severity of DME in each image, ultimately [9]. In
addition, ZAIDI et al. developed a grading method to detect the location of secretions
to assess the severity of DME, combining Gabor filtering, mathematical morphology,
Otsu thresholds with Bayesian classifiers [10]. Based on matching correlation together
with typical fovea characteristics, a fovea detection method is also proposed [11]. This
algorithm was tested on some local data sets, and the sensitivity and specificity were
up to 80.4 and 99.1%, respectively. Furthermore, BABY and CHANDY extracted the
features in the wavelet subbands obtained by the double-tree complex wavelet trans-
form (DT-CWT) for DME classification with Gaussian data description (GDD) [12].
MOOKIAH et al. also proposed another method to extract image features based on high
-order spectra to assess the severity of DME [7].

However, the performance of the scoring system described above relied on exudate
segmentation, anatomical location, and feature extraction strategies. In order to change

a b

Fig. 1. Retinal OCT image of a subject: normal (a) and DME (b).
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this limitation of traditional technology, deep learning was introduced. Deep learning
technology is a new image classification technology with high precision [13]. The au-
tomatic feature extraction algorithm relying on deep learning has become a viable and
effective method in some computer vision applications, such as ImageNet classifica-
tion [14] and face recognition [15]. In the field of ophthalmology, some researchers
have limited the application of deep learning to fundus photographs for automatic de-
tection of diabetic retinopathy, visual field examination of glaucoma patients, grading
of cataract, and segmentation of foveal microvessels [16, 17]. In fact, recent advances
in image recognition and classification have turned to deep learning methods. LEE et al.
developed a new algorithm based on convolutional neural network (CNN) to detect
intraretinal fluid (IRF) on OCT images, and the results were consistent with those of cli-
nicians [18]. A fully automatic retinal cyst segmentation technique was proposed for
the OCT image stack obtained from commercial scanners, where the fast speckle
denoising noise was calculated by bilateral filters while maintaining the boundary of
the cystic macular edema (CME) [19]. A correlation-based feature subset (CFS) se-
lection algorithm was proposed to screen the characteristics of OCT images based on
linear configuration patterns, and to distinguish age-related macular degeneration
(AMD), diabetic macular edema (DME) and healthy macula [20]. 

A common phenomenon, requiring a large amount of data to increase the general-
ization ability of the training model in machine learning and deep learning, has been
discovered. In the case of insufficient data volume, models are usually easy to overfitting,
which will have a negative impact on performance during testing. In general, research-
ers build models with data-driven feature quantifiers (filters), i.e., a higher order model,
to prevent overfitting. Therefore, to compensate the imperfections of classical machine
learning, a transfer learning [21] has been introduced, in which the model is trained
on tasks with sufficient data, and then the model parameters fine-tuned used for the
required target task. In this paper, an automatic diagnostic system by fine-tuning the
VGGNet-16 network is proposed to distinguish DME images from optical coherence
tomography (OCT) retinal fundus normal images.

The rest of this paper is organized as follows. In Section 2, the experimental method
is given as model theoretical fundamentals. Then the proposed image classification al-
gorithm for diabetes macular edema based on transfer learning is described in detail
and some evaluation indicators are introduced. Next in Section 3, the comparison of
experimental performance between different methods on the same data set is discussed
and the experimental results are shown. Finally, some concluding remarks are drawn
in the last section.

2. Experimental method

2.1. Experimental platform and data set

The deep neural network of this experiment is built on the TensorFlow deep learning
framework, and uses the Python-based machine learning tool (scikit-learn) to interact
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with TensorFlow’s Python interface. The experimental hardware platform includes: Intel
Core i5 7500k processor, 8 GB memory, graphics card for NVIDIA GeForce GTX1060,
6 GB memory.

The dataset (Duke data set) required for this study evaluation is a publicly available
OCT data set from Duke University [22]. Duke data set consists of 45 subjects (15 dry
AMD, 15 DME, and 15 normal) and each with multiple images (example as shown in
Fig. 2). DME images and normal ones are reconstructed into a new data set for this
experimental study. However, some images could not provide a clear view of the retina
because of imaging techniques, such as some unclear illumination and motion blur im-
ages, which were excluded. The final OCT image dataset consists of 522 DME images
and 1398 normal images.

2.2. Transfer learning algorithm design

An effective transfer learning algorithm to process medical images should be developed
to provide accurate and timely diagnosis of key pathologies in each image. Transfer
learning is a very impressive technique, especially under limited data. The optimized
lower-level weights are fine-tuned by a feedforward network to identify the structure
in the general image, and the upper layer’s weights are retrained by backpropagation
instead of training a completely blank network. The model obtained can distinguish
features of a particular category of images (e.g. images of the eye), not only faster but
with fewer training examples and less calculate ability [23]. Figure 3 is a schematic
of transfer learning.

The schematic depicts that a convolutional neural network trained on 1000 categories
of ImageNet data sets can be adapted to improve the accuracy of training the network
on new data sets of eye images and shorten the training duration.

The proposed algorithm pre-initializes the VGGNet-16 model parameters with the
trained model on ImageNet, fixes the shallow network parameters without updating,
and then fine-tunes the deep network parameters, while the final, fully connected layers
will be re-established. The comprehensive research includes: 

Fig. 2. Representative OCT image.
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1) Pre-processing: adjusting the OCT images to the pixel size required by the
VGGNet-16 network, and then dealing with the data distribution unbalance problem
with the oversampling strategy;

2) Transfer learning: since the CNN model has a huge number of parameters, its
operation process is time-consuming, leading to excessive fitting easily. Therefore, the
VGGNet-16 network parameters are pre-initialized with the transfer learning method;

3) Classifier design: extracting the OCT images features of network learning is ap-
plied in the last connection layer, meanwhile image features are automatically classified
with the softmax function;

Fig. 3. Schematic diagram of transfer learning.

ImageNet Newly initialized weights

1000

Transfer

Pretrained Learned

Diabetic macular

Normal

categories

learning

weights weights

edema

Fig. 4. System block diagram.

Image Fearture
Build

Model

Oversampling Sigmoid
f1-scores

Convolution 1
Convolution n Fully

DME

Normal

connected

precision

evaluation
classification

modelextractionpreprocessing

Sensitivity
accuracy



572 P. WANG et al.
4) Model evaluation: the classification results are evaluated by a whole string of
evaluation indicators (e.g. sensitivity, accuracy, confusion matrix) to verify the per-
formance of the model. Figure 4 shown system block diagram.

2.3. VGGNet16 network structure

In Keras, the application module comprises an auxiliary Keras application, which is
provided with Keras model pre-trained weights. One can use these models directly or
modify the model to complete transfer learning.

VGGNet-16 ranked second in the Image-Net competition and ranked first in posi-
tioning in 2014 [24], which is one of CNN’s classic architectures, and widely used in the
classification of other medical images. VGGNet-16 consists of 13 convolutional layers
with 3 fully connected layers and the size of the input image is 224 × 224 × 3. Each
convolution layer is followed by an activation layer containing the ReLU activation
function, which is then connected to the pooling layer. The convolutional layer of
VGGNet-16 with 3 × 3 × 3 convolution kernels reduces the number of training param-
eters and increases that of the convolution kernels compared with the convolution ker-
nel of AlexNet network [25]. 

The VGGNet-16 model and its simple modifications will be exploited. As shown
in Fig. 5, the input of the first fully connected layer is 7 × 7 × 512 and the output is
a one-dimensional vector of 12800. The first fully connected layer is equivalently rep-
resented by an effective convolutional layer with a convolution kernel size of 5 × 5
and a stride of 1. The output is 1 × 1 × 12800, equivalent to the full connection layer,
which can more effectively predict the sliding window of the test image. After that,
a flatten layer between the replaced convolutional layer and the second fully connected
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Fig. 5. VGGNet-16 structure diagram.
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layer makes the multidimensional input one-dimensional. Next, the dropout layer is
appended to the second fully connected layer, which reduces the over-fitting phenom-
enon by weakening the interaction among the features due to too small data volume.
The third fully-connected layer, a dense layer, is activated with softmax and the binary
cross entropy is considered as a loss function. Finally, after three fully connected lay-
ers, we get a binary result: 0 (normal) or 1 (DME).

2.4. Evaluation indicators

From a clinical perspective, DME automatic detection focuses more on the accuracy
of target detection and the diversity of methods, and does not care about the specific
details of the methods. For detailed statistical evaluation, the performance of the pro-
posed system is measured with sensitivity, precision, accuracy and f1-scores as figures
of merit. Therefore, the following indicators from the image level are used, respec-
tively,

(1)

(2)

(3)

(4)

where TP (TN) is true positive (negative), indicating that the real category of the sample
is a positive (negative) class, but the result of the model recognition is a positive (neg-
ative) class. FP (FN) is false positive (negative), which means the real category of the
sample is a negative (positive) class, but the result of model recognition is a positive
(negative) class. SE, i.e., sensitivity, reflects the probability that normal images will
not be missed. AC, i.e., accuracy, is the proportion of all judgments correctly obtained
as a percentage of the total. The positive category is normal images and the negative
category is DME images. P, i.e., precision of other indicators, indicates the proportion
of samples that are truly positive in the sample identified as positive and the higher
the precision, the better the effect of the model, normally. R, i.e., recall rate, equals the
sensitivity index. That is to say, the model correctly identifies the ratio of the number
of positive samples to the total number of positive samples. In general, the higher the
recall rate, the more positive samples are predicted correctly by the model. At the same
time, the performance of model is of higher quality. And f1-score, i.e., the balanced
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score, is defined as the harmonic mean of the correct rate and the recall rate. The re-
ceiver operating characteristics (ROC) and area under curve (AUC) are also employed
to evaluate the parameter-independent classification performances.

3. Experimental results and discussion

The OCT image data set consists of 522 DME images and 1398 normal images. The raw
data was split into “test sets” and “training sets” by using the train_test_split module
in sklearn.cross_validation. The test sets account for 20% of the total set, remaining 80%
constitute the training sets and the seed of the fixed random number is guaranteed to
obtain the same random number for each division. During model training, the random-
ness caused by model fine-tuning produces variable experimental results. Therefore,
this study repeated experiments and saved the best model (97.9%). After 50 epochs
experiments, we show sensitivity, precision, f1-score, accuracy and AUC obtained by
our proposed method in Table 1.

In the field of machine learning, the confusion matrix is a visual display tool to eval-
uate the quality of a classification model. Each column of the matrix represents the sam-
ple condition of the model prediction, and each row of the matrix represents the real
situation of the sample. The confusion matrix is another method to judge the degree
of the classification beside ROC and AUC. 

The prediction of each category can be obtained from the confusion matrix in Fig. 6a.
We randomly selected 98 images (49 DME, 49 normal) from the original data set for

T a b l e 1. Quantitative results on the test set. 

Class Precision Sensitivity f1-score Accuracy AUC

DME 1.00 0.960 0.982 0.978 0.980

Normal 0.970 1.00 0.982 0.981 0.980

Average 0.985 0.980 0.982 0.979 0.980
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Fig. 6. Confusion table (a), and receive operating characteristic (ROC), AUC = 0.980 (b).
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an experimental evaluation. We found that the accuracy and precision of the experi-
ment reached 98.9% and 98%, respectively. In the case where the true value is positive
(normal), the correct proportion of prediction is 100% (sensitivity). In addition, in the
case where the true value is negative (DME), the correct proportion of prediction is
97.9% (specificity). While it is claimed that our method is not necessarily a better meth-
od than the others, but it is clear that our model performs well in terms of the ROC
and AUC value (Fig. 6b).

To verify the reliability of this study, Table 2 shows the comparison between dif-
ferent methods of sensitivity, f1-score, accuracy and AUC values on the same data set
(Duke data set). An area (AUC) under the receiver operator characteristics curve value
was not reported by these researches which is why the corresponding table columns
in Table 2 contain “NA”. In the following paragraph, we explain the results of each
method in details.

On the one hand, the sensitivity of SRINIVASAN et al. [22] achieves 100% far more
than VENHUIZEN et al. [26], LEMAÎTRE et al. [27] and SIDIBÉ et al. [28], and compared
to these three methods, our proposed method implements a sensitivity of 98.0%. On the
other hand, in terms of another important metric for the performance, the measurement
is f1-score, the highest achieved 98.2% by our proposed method and the lowest value
(70.4%), obtained by VENHUIZEN et al. The proposed method achieved the highest value
in both f1-score and accuracy (97.9%), which is higher than other methods, with the
second highest value (93.3%) obtained by SRINIVASAN et al. and LEMAÎTRE et al. In other
words, the performance of the proposed method is better in these performance metrics.

4. Conclusion

Medically, the image examination of eye diseases mainly remains at the doctor’s man-
ual diagnosis stage, but manual diagnosis could bring about high labor costs. In this
paper, a deep convolutional neural network is used to achieve automatic classification
of diabetic macular edema by analyzing the characteristics of the patient’s OCT images
of the eye. However, in order to solve the problem that the model commonly used in
the classification algorithm of diabetic macular edema based on convolutional neural
network is difficult to train and easy to overfit, this paper proposed an image classifi-
cation algorithm based on transfer learning and softmax classifier. Unfortunately, the
current study mainly focused on classifying the pathological condition, and there was
no detection of its severity which is very important in clinical set up. In the future, we

T a b l e 2. Performance comparison on the same data set. 

Method Sensitivity f1-score Accuracy AUC

Ref. [22] 1.000 0.937 0.933 NA

Ref. [26] 0.714 0.704 0.700 NA

Ref. [27] 0.866 0.928 0.933 NA

Ref. [28] 0.800 0.888 0.900 NA

Proposed 0.980 0.982 0.979 0.980
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hope to predict images containing severity levels and expand the current framework
to detect other abnormal structures, namely vitreous macular traction, retinal anterior
membrane, drusen and other eye diseases, such as age-related macular degeneration.
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