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We present generalized expressions to calculate the orbital angular momentum for invariant beams
using scalars potentials. The solutions can be separated into transversal electric TE, transversal
magnetic TM and transversal electromagnetic TE/TM polarization modes. We show that the su-
perposition of non-paraxial vectorial beams with axial symmetry can provide a well-defined orbital
angular momentum and that the modes superposition affects the angular momentum flux density.
The results are illustrated and analyzed for Bessel beams.
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1. Introduction

Since the pioneering and interesting work of the orbital angular momentum presented
by ALLEN et al. [1], the study of the subject has covered many interesting applications [2];
a compilation overview over the last 25 years, with several theoretical and experimen-
tal applications was reported in [3]. The authors in [4] have recently demonstrated that
a rotationally arranged nano-antenna can be used to convert the phase information in
a twisted light beam into spectral information, which hence can be used to classify the
phase state of the twisted light beam. This effect has a strong influence on the optical
properties of dielectric and plasmonic particles and it is useful for new technological
applications. The physical properties of the orbital angular momentum have the potential
to improve the performance of optical communication systems in different ways [5],
but it is not the aim of this manuscript to explore the full list of possibilities. Exploiting
the physical properties of the orbital angular momentum is the subject of an increasing
number of research topics nowadays. In this context, here we focus on the use of the
scalar formalism for studying the orbital angular momentum for invariant beams; due
to its simplicity, this approach has been theoretically [6] and experimentally [7, 8] used
and tested.
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Recently, the scalar representation has been used to describe scattering problems
using partial waves series in the far field approximation, where the impinging source is
a structured field [9–12]. Effects also considering the polarization [13], the extinction [14]
and driven acoustic radiation forces [15] have also been considered. Furthermore, the
scalar approach is a natural representation for the structured beams family, also known
as “non-diffracting beams”. The study of these fields covers different areas, from quan-
tum mechanics to astrophysics [16]. Such fields are the Bessel [17], Mathieu [18] and
Weber beams [19], which are constructed by superposition of plane-waves [20], for-
malism which is called angular spectrum representation [21]. These ideal fields prop-
agate indefinitely without changing their transverse intensity distribution [22], even
in the presence of massive phase perturbations and into inhomogeneous media [23]. As
an interesting application, among others, this physical effect increases the resolution
and contrast to image sub-cellular components and organelles in different microscopy
methods [24].

Otherwise, the study of structured invariant beams is of increasing interest in op-
tical physics. Their properties make them particularly attractive for optical design [25],
for studying propagation through etalons and crystals [26]. Another interesting exam-
ple is the use of Bessel beams for driving an optimal single tractor beam for dielectric
particles with cylindrical shape [27].

The study of non-paraxial orbital angular momentum was recently revisited in [28]
using Bessel beams; in that work, the authors show well defined orbital angular mo-
mentum properties, without considering the possibility of contributions due to mixed
modes superimposed along their propagation. To the best of our knowledge, this feature
has not been fully explored. However, recently, using the scalar potential approach,
fundamentals electromagnetic properties, such as the energy density, the Poynting vec-
tor, the Maxwell stress tensor for non-paraxial beams were derived [29]. Currently, the
study of the Poynting vector has drawn considerable interest due to its features and
properties along the propagation.

In the context of structured beams, NOVITSKY [30] has shown that Bessel beams
possess negative values in the longitudinal and azimuthal components of the Poynting
vector, which depends on the superposition of mixed modes and on the phase detuning
between the complex amplitudes cTE and cTM of the transversal electric or magnetic
part of the beam representation. Since then, many interesting results have been report-
ed, such as the explanation of optical pulling forces [31], effects in metamaterials [32],
tractor beams [33] and optical manipulation [34], to name a few of them. Another in-
teresting case was reported for X-waves in [35], where the propagation direction of
their negative Poynting vector could be locally changed using carefully chosen com-
plex amplitudes; however, we showed [29] that the negative behavior can be found
independently of the mode interference. Nonetheless, the Poynting vector behavior
presented in the Bessel beams and in the X-waves, mentioned above, has opened a dis-
cussion related to tractor beams generation, and with other interesting applications,
such as the forces that can be locally oriented in a direction opposite to the propagation
wave vector [36].
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Then, what is the relationship between mixed modes and the negative Poynting vec-
tor (NPV)? This effect can be physically defined as an uncommon response produced
by the local sign change in the Poynting vector components along its propagation. Re-
cently, we reported in [37] to deepen the understanding of the NPV to study the invar-
iant family beams. The main result of our work was to show the negative local change
of the negative Poynting vector, which can be independently obtained without the super-
position of mixed modes TE/TM, as it is in the case of Weber beams [37]. Additionally,
considerable interest in theoretical and experimental studies of the vectorial structured
fields is driven by the possibility to create a wide variety of exotic optical focal fields
with homogeneous and spatially inhomogeneous states of polarization; an interesting
review of the wide scope of interest and applications is presented in [38].

In this context, the study of the properties of the orbital angular momentum from
the theoretical an experimental points of view can open new engineering technologies.
Using the concept of the Poynting vector can be useful, as shown by proposals to measure
the orbital angular momentum using the superposition of vector mixed modes TE/TM.
This was performed and tested for Laguerre–Gauss beams [39]. This approach may open
interest for other structured fields, as it was also proposed by using X waves in ultrashort
optical pulses [40]. Even, in the case of two electromagnetic plane waves with the same
angular frequency and different wave vectors, the superposition fields reveal highly
nontrivial structure in the local momentum and spin densities [41], that can be used to
enhance the optical manipulations of small particles. For example, the spinning dynamics
can be driven by superposing two vortex beams with respective circular and radial po-
larizations such that the particle spins around a certain optical axis [42]. The authors
in [43, 44] have pointed out the importance of the Poynting vector for obtaining orbital
angular momentum from spatial superposition of the Poynting vector beams.

This article is organized as follows: in Section 2, we briefly review the theoretical
framework based on the scalar potential approach; in Section 3, we present the general
negative Poynting vector for the whole invariant beams family; in Section 4, we study
the orbital angular momentum in their transversal and longitudinal propagation due to
mixed modes and in Section 5, we present our conclusions.

2. Maxwell equations in terms of scalar potentials 

Following the formalism proposed by STRATTON [45], we write the electromagnetic
fields as

(1a)

(1b)

where M(r) and N(r) are vector fields proposed as

(2)

E cTE M r  cTM N r +=

H i ε
μ

------ cTE N r  cTM M r +–=

M r   âψ r  =
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(3)

being ψ a scalar field,  an arbitrary unit vector that determines the direction of prop-
agation (which we will choose as the Z axis, so ), k the magnitude of the wave
vector, ε the electric permittivity, μ the magnetic permeability, and cTE and cTM two
arbitrary complex numbers. This approach has been successfully used to study the
properties of the family of invariant beams, theoretically and experimentally [6–8].

It is straightforward to verify that if a scalar field ψ (r) satisfies the Helmholtz equa-
tion

(4)

then the fields (1a) and (1b) satisfy the Maxwell equations; so, the scalar field ψ (r)
will be named scalar potential. Note that the vector fields, M and N, are orthogonal,
that is M ꞏ N = 0, and solenoidal, i.e.  ꞏ M = 0 and  ꞏ N = 0.

On the other hand, for any invariant beam, the spatial evolution of the scalar po-
tential ψ can be described by its transverse and longitudinal parts [46]. The transverse
part φ (u1, u2) will depend only on the transverse coordinates, u1, u2, and the longitu-
dinal part Z(z) will depend on the longitudinal coordinate z (as we selected ),
physically the propagation axis; i.e., we can write

(5)

After substituting (5) in the Helmholtz equation, we easily obtain that φ (u1, u2) satisfies
the two dimensional transverse Helmholtz equation

(6)

where  is the Laplacian transversal operator, which has a specific form in each co-
ordinate system, and the longitudinal part is Z(z) = exp(ikzz) with the dispersion rela-
tion  The two dimensional transverse Helmholtz equation (6) can be
separated in Cartesian, cylindrical, parabolic cylindrical and elliptical cylindrical co-
ordinates [46], and that gives origin to plane waves, Bessel beams, Weber beams and
Mathieu beams, respectively. Then, we can write the vector operator fields, Eqs. (2)
and (3), as follows: 

(7)

where

(8)

and  and  are the base unit vectors corresponding to the transversal direction, and
h1 and h2 are the corresponding scale factors. We note that in the four coordinate sys-

N r  1
k

----- M r =

â
â ê3=

2ψ k2ψ+ 0=

â ê3=

ψ u1 u2 z   φ u1 u2 Z z =

T
2 φ kT

2 φ+ 0=

T
2

k2 kT
2 kz

2.+=

M ikz z T
φexp–=

T
 ê1

1
h2

--------- 
u2

------------– ê2
1
h1

--------- 
u1

------------+=

ê1 ê2
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tems, in which Eq. (6) can be separated, the scale factor h3 is equal to 1. It is also easy
to verify that

(9)

where T is the transversal part of the  operators, i.e. 

(10)

It is worth to notice that the transversal vector operators are related as  

3. A generalized Poynting vector for scalars potentials

The Poynting vector represents the directional power flux per unit area of an electro-
magnetic field. For harmonic electromagnetic fields, the time average of the Poynting
vector is given by [47] 

(11)

Substituting expressions (1a) and (1b) for the electromagnetic fields into (11), a gen-
eralized expression for the Poynting vector of any invariant beam is obtained [29],

(12)

where

(13)

is the transversal electric part,

(14)

is the transversal magnetic part, and the interference modes TE/TM

(15)

The time averaged Poynting vector is independent of the z coordinate and it satisfies
 as was proven in [48]. It is important to remark that the interference

term in the Poynting vector, expressed in Eq. (15), is different from zero for any in-

N
ikz z exp

k
----------------------------- ikzT ê3 kT

2+ φ=

T ê1
1
h1

--------- 
u1

------------ ê2
1
h2

--------- 
u2

------------+=

T
 ê3 T= .

S  1
2

------ Re E H* =

S  cTE
2

STE  cTM
2

STM  STE/TM + +=

STE  1
2k
--------- ε

μ
------ Re Tφ Tφ* kz ê3 i kT

2 φ*Tφ–=

STM  1
2k
--------- ε

μ
------ Re Tφ Tφ* kz ê3 i kT

2 φ*Tφ+=

STE/TM  1

2k2
----------- ε

μ
------ Re i cTE cTM

* k2 cTE
* cTM kz

2+  Tφ
* Tφ  ê3

cTE
* cTM kz kT

2 ê3 T φ*φ +

=

 S  0,=
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variant beam, of course, whenever at least one of the two constants cTE and cTM is not
null. Physically this confirms the negative behavior trough the propagation; these re-
sults were recently reported in [37] using the Weber beams. The study of its effect on
the orbital angular momentum is done in the following sections.

4. Orbital angular momentum density

For harmonic electromagnetic fields, the time averaged linear momentum per unit vol-
ume carried is  [44, 49], and then, the time averaged orbital angular
momentum density is  using Eqs. (13), (14) and (15),
we can find explicitly the contributions from the transverse electric, from the transverse
magnetic and from the transverse electric/transverse magnetic TE/TM mixed modes.
The transversal electric TE part is

(16)

whereas the transversal magnetic TM contribution has the form

(17)

and the interference mixed modes TE/TM part is given by

(18)

The set of Eqs. (16), (17) and (18) provide a useful simple recipe to calculate the
orbital angular momentum of any invariant beam in terms of scalar potentials. It is im-
portant to remark that Eq. (18) physically represents the orbital angular momentum
propagation due to the superposition of modes TE/TM.

4.1. Example: orbital angular momentum for Bessel beams 
using a scalar potential

The properties of the orbital angular momentum have been extensively investigated by
different means [3, 50]. However, to the best of our knowledge, the study of the orbital
angular momentum arising from mode superposition has not been attempted before;
nevertheless, the interference Bessel beams have been applied in the micro-manipula-
tion of particles [51, 52]. With this in mind, and as an illustrative example, we analyze
the particular case of the orbital angular momentum of Bessel beams.

p  S  /c2=
j  r p  r S  /c2;= =

jTE  ε
2ω

----------- cTE
2
Re kz Tφ Tφ

* r ê3 i kT
2
φ* r Tφ–=

jTM  ε
2ω

----------- cTM
2
Re kz Tφ Tφ

* r ê3 i kT
2
φr Tφ

*+=

jTE/TM  cε

2ω2
------------- Re i k2cTE cTM

* cTE
* cTM kz

2+  Tφ
* Tφ  r ê3 

cTE
* cTM kz kT

2 r ê3 T φ*φ +













=
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The transversal solution of the scalar Helmholtz equation in cylindrical coordinates is

(19)

where m is any integer, Jm(ζ ) is the Bessel function of the first kind of order m, and
kT = ksin β  is the transversal vector [16]. Substituting (19) in (16), (17) and (18), we
obtain the orbital angular momentum of a Bessel beam. The radial angular momentum is 

(20)

while the azimuthal angular momentum component is

(21)

and the longitudinal component is

(22)

As can be observed, all terms have a clear contribution of modes superposition,
which in general is different from zero. Even, for the most simple case, when the az-
imuthal value is zero, m = 0, the mixed modes are given by 

(23)

(24)

(25)

φ r θ  Jm kTr  imθ exp=

jr  cε

2ω2
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zkT
2

r
------------ cTE

2
cTM

2
+ kmJm

2
rkT –
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* cTM Jm rkT  rkT Jm 1– rkT  mJm rkT –+













=
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2rω
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2
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2

+ kz

r2kT
2 Jm 1–

2
rkT  2m2Jm

2 rkT  2mrkT Jm 1– rkT  Jm rkT –+

–

2km Jm rkT  rkT Jm 1– rkT  mJm rkT – Re cTE cTM
* cTE

* cTM

kz
2

k2
---------+

 
 
 

+













=

jz  cε

2ω2
------------- kT

2 cTE
2

cTM
2

+ mk Jm
2 rkT 

2kzRe cTE
* cTM  Jm rkT  rkT Jm 1– rkT  m Jm rkT –+






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



=

jr  Re cTE
* cTM  cε

ω2
---------- kz kT

3
z J0 rkT  J1 rkT =

jθ  cTE
2

cTM
2

+  ε
2ω

----------- kz kT
2 rJ1

2 rkT =

jz  Re cTE
* cTM  cε
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---------- kz kT

3
rJ0 rkT  J1 rkT –=
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If the mixing is considered, these results show that there is interference between the
radial and azimuthal components. Writing cTE = |cTE|exp(iφ1) and cTM = |cTM|exp(iφ2),
we have  = cos(φ1 – φ2); thus this term contributes if there is a difference
of phase between cTE and cTM, otherwise this term is zero. Therefore, all the well-known
results for the orbital angular momentum can be obtained.

4.2. Longitudinal orbital angular momentum

The above equations allow us to obtain the longitudinal orbital angular momentum for
a particular transversal electric, magnetic or interference mode; the procedure is just
to take the scalar product of (16), (17) and (32) with  For any invariant beams the
longitudinal orbital angular momentum can be obtained as 

(26)

(27)

(28)

where  and  Where  is given by Eq. (8) and which
physically means a π/2 rotation of T. Note that only the transversal structure beam,
which is given for a single scalar potential φ, is required; all terms are proportional
to  Equation (28) is given in terms of mixed modes and it is proportional to the
ratio kz /k. In the particular case of the Bessel beams, we substitute expression (19) into
(26) and (27) obtaining the following results

(29)

and

(30)

We have obtained a well-known defined orbital angular momentum; these results
recover the results reported in [28] for Bessel beams. A well-defined longitudinal or-
bital angular momentum is obtained for TE and TM modes when m = 0, since there is
no orbital angular momentum in the direction of propagation; if  the beam carries
orbital angular momentum in the direction of propagation [2, 3]. Additionally, using the
Eq. (29), Eq. (30) and the longitudinal electromagnetic energy density reported in [29],

Re cTE
* cTM 

ê3.

jz
TE 

εkT
2

2ω
----------- cTE

2
Re φ*LTφ  ê3=

jz
TM 

εkT
2

2ω
-----------– cTM

2
Re φL Tφ*  ê3=

jz
TE/TM  ε

2ω
----------

kz

k
-------kT

2 Re cTE
* cTM L T

 φ 2  ê3=

LT i– r T= L T
 r T

 .= T


kT
2 .

jz
TE 

εkT
2

2ω
----------- cTE

2
mJm

2 rkT =

jz
TM 

εkT
2

2ω
----------- cTM

2
mJm

2 rkT =

m 0,
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it is straightforward to verify that the ratio of  [28].
These results confirm a well-defined values of angular momentum and energy for this
nonparaxial approximation. 

For the case of longitudinal mixed modes, substituting (19) into (28) and after some
algebraic manipulation, we get 

(31)

In this more general case, the longitudinal orbital angular momentum is not pro-
portional to the topological charge m, as in the single mode case. Now it is related to
the radial derivative of the square field weighted by its radius minus the intensity of
the incident field.

In Fig. 1, it is shown the transverse electric  and the transverse magnetic
 longitudinal orbital angular momentum for Bessel beams with m = 1 and m = 2. 

In Fig. 2 the mixed modes superposition  longitudinal orbital angular
momentum is shown for m = 1 and for m = 2. We obtain a well-defined regions due to
the interference superposition modes which can be observed. This feature can be use-
ful; the application of Bessel beams for optical manipulation has been proposed [51],
and it has recently been successfully developed for the case of a single-beam or coun-
ter-propagating beam trapping [53].

Recently, in [54], it has been shown how combining two Bessel beams, as in Eq. (19),
with topological charges m = ±1, makes possible to generate a Hermite–Gauss (HG)
beam, which possesses a well-defined orbital angular momentum [55]. Moreover, it is

jz
TE  / U  z jz

TM  / U  z= m/ω

a b

Fig. 1. Longitudinal orbital angular momentum  of a transversal electric Bessel beam with m = 1 (a)
and of a transversal magnetic  with m = 2 (b). 

jz
TE 

jz
TM 

jz
TE/TM  ε

ω
-------

kz

k
------- kT

2 Re cTE
* cTM 

  d
dr
----- rJm

2
rkT  Jm

2
rkT –

 
 
 

=

jz
TE 

jz
TM 

jz
TE/TM 
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important to mention that a superposition of Hermite–Gauss beams can be transformed
into a Laguerre–Gauss beam [56] which possesses a very well-known and character-
istic exp(imφ) factor [1–3]. Thus, our generalized analytical formulation makes pos-
sible the study of the orbital angular momentum using a single scalar potential.

4.3. The transversal interference term carry orbital angular momentum 

We can finally consider the paraxial approximation; i.e., the case when  We sub-
stitute that approximation into Eq. (32), in which the second term vanishes. Without
loss of generality, we can rewrite the complex constants defined above as  and

 Then, it is straightforward to obtain

(32)

and

(33)

This expression clearly shows the vectorial transversal structure propagating due
to mixed modes for any invariant beam. It is worth noticing the presence of the term

 which is due to the fact that any invariant beam can be generated as

a b

Fig. 2. The longitudinal orbital angular momentum interference term  of a Bessel beam, with
m = 1 (a), and with m = 2 (b).
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2ω2
------------- Re i k

2
cTEcTM

* cTE
* cTMkz

2+  Tφ* Tφ  r ê3 

cTE
* cTM kz kT

2 r ê3 T φ*φ +













=

jTE/TM  ε
2c

---------Re α*β αβ*–  Tφ T
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1
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a superposition of plane waves [21]. This parameter σ has been physically linked with
polarization states and it has been usually reported in paraxial and nonparaxial approx-
imations [2, 3]. After substituting a Bessel beam expressed by (19) into (33) and chang-
ing into cylindrical coordinates x = rcosθ and y = rsinθ, we obtain 

(34)

This expression reveals that the orbital angular momentum contribution of the mixed
modes is proportional to the topological azimuthal m factor and depends linearly on
the transversal wave vector. Taking σ = 0 means linear polarization and the lack of pos-
sible interference modes; otherwise, for σ = ±i, we have circular polarization with the
existence of mixed modes. 

Figure 3 shows the transverse amplitude vector with the mixed orbital angular
momentum modes given by Eq. (34), for different values of m, with σ = i. 

In Fig. 4, we change the azimuthal order to m = 2 and the polarization is σ = –i. In
both cases the intensity exhibits an azimuthally asymmetric shape which becomes cir-
cularly symmetrical.

Lastly, Eq. (34) can be written using the following Bessel function identity Jm – 1(z)
– Jm + 1(z) =  [57], to obtain

(35)

jTE/TM  m
ε

2c
--------- iσkT Jm rkT  Jm 1+ rkT  Jm 1– rkT – êr θsin êθ θcos– =

a b

Fig. 3. The transversal vector orbital angular momentum (a) and its intensity (b) for a Bessel beam with
m = 1 and σ = i.

2J'm z 
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ε
c

------ σmkT Jm kT r  J'm kTr  êr θsin êθ θcos– 

i–
ε

2c
------ σm

d Jm
2

kT r 
dr

--------------------------- êr θsin êθ θcos– 

=

=
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It is possible to identify the input field intensity I (r) as I(r) = |E |2 =  and
using c = ω/k, we get

(36)

Thus, the transversal mixed modes orbital angular momentum can be calculated
as the radial derivative of the input field intensity with a well-defined topological
charge. Notice also that this expression contains the optical parameter, and it is pro-
portional to the topological charge m. It is worth mentioning that a similar term was
reported theoretically in [58] and tested experimentally in [59], to explain the mechan-
ical action of the spin part of the internal energy flow. There, the authors also showed
the possibility of controllable motion of suspended particles by changing the polari-
zation of the input field.

5. Conclusions

We have investigated the transversal and longitudinal propagation of orbital angular
momentum for invariant beams using a single scalar potential. We have proved that the
invariant beams satisfy Maxwell equations and possess a well-defined orbital angular
momentum [28]. We have shown that the superposition of non-paraxial vectorial beams
with axial symmetry can provide a well-defined orbital angular momentum. These results
exhibit how the modes superposition affects the angular momentum flux density and
causes reverse propagation in the case of the fractional Bessel beams [60, 61]. In [62],
the authors have studied the importance to handle the amplitude, phase and polarization

Jm
2 kT r ,

jTE/TM  i
εσ
2

---------- m
k
ω

-------- d I r 
dr

------------------ êr θsin êθ θcos– –=

a b

Fig. 4. The transversal vector orbital angular momentum (a) and its intensity (b) for a Bessel beam with
m = 2 and σ = –i.
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in order to design structured fields to study the spin-orbit interactions in Bessel beams.
Adopting the single scalar potential approach, presented here, may be useful to find
interesting applications, as the electromagnetic spin and canonical momentum for
paraxial and non-paraxial beams recently reported in [63–65].
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