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Underwater image enhancement has been receiving much attention due to its significance in fa-
cilitating various marine explorations. Inspired by the generative adversarial network (GAN) and
residual network (ResNet) in many vision tasks, we propose a simplified designed ResNet model
based on GAN called efficient GAN (EGAN) for underwater image enhancement. In particular,
for the generator of  EGAN we design a new pair of convolutional kernel size for the residual block
in the ResNet. Secondly, we abandon batch normalization (BN) after every convolution layer for
faster training and less artifacts. Finally, a smooth loss function is introduced for halo-effect alle-
viation. Extensive qualitative and quantitative experiments show that our methods accomplish con-
siderable improvements compared to the state-of-the-art methods.
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1. Introduction

Recently, growing research attention has been focused on underwater image enhance-
ment for its fundamental role in multiple sea world applications [1, 2]. As underwater
environments are affected by many factors, it is a challenging task for the real-world
underwater image enhancement. Conventionally, underwater image is distorted by
light scattering and wavelength-dependent absorption [3–5]. These negative effects re-
sult in low contrast, dim visibility, and color shift in the obtained images which pose
considerable obstacles to the exiting algorithms in achieving demanding results. For
underwater scene, severe light scattering come from the suspended multisize particles,
resulting in backward and forward light propagation direction changing. Light absorp-
tion appears due to the fact that the longer the light wavelength is, the faster it is ab-
sorbed. Thus the energy of red light reduces faster than the blue and green light. Based
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on that, the underwater scenes usually appear in bluish or greenish tone. The reasons
behind those negative phenomena are various: operation depth, water temperature, and
weather conditions, to name a few. Because of that, it is difficult to explicitly model
the distortion conditions, and restoring natural colors and fine details for distorted
underwater image still remain an open problem [6]. In the past few years, many inspiring
methods tackle this issue based on the image formation model (IFM). These include
the methods based on: dark channel prior (DCP) [7], red channel prior [8], and haze
-line [9]. In [10], LU et al. used color lines to estimate background light and DCP to
estimate transmission map. HAN et al. [11], started from estimating the point-spread
-function using slant-edge-method. And PUROHIT et al. [12], proposed a weighted com-
bination of multilevel image details to restore image texture. Specially the fusion strat-
egy [13], proposed by ANCUTI et al. utilized the color corrected version and contrast
enhanced version of the raw underwater image to produce the enhanced result. In [14],
PENG et al. proposed to estimate scene depth based on image blurriness and light
absorption. SONG et al. [15] proposed another way for scene depth estimation using
underwater light attenuation prior. Although those methods could produce satisfactory
results in some cases, their generalization ability remains uncertain.

In the last several years, the convolution neural network (CNN) has proved its great
effectiveness in many computer vision tasks. Hence there are increasing interests on
CNN-based underwater image enhancement. In [16], ANWAR et al. utilized a synthetic
underwater image database to train a convolutional neural network (UWCNN) and
proved its generality in a variety of underwater scenes. In [17], LI et al. used the fusion
strategy [13], to pre-process raw underwater images first, then put them into a trained
CNN model to get the enhanced result. Apart from that, as generative adversarial net-
work (GAN) was making remarkable progress in single image super resolution [18],
the atmospheric image dehazing [19], and image translation [20], its practicability was
also brought into underwater scenarios. In [21], LIU et al. proposed a conditional GAN
model in which a multiscale feature extraction manner was introduced to form the gen-
erator. In [22], LI et al. proposed a WaterGAN to generate synthetic sea-world images,
then use those data to train a two-stage network for underwater image color correction.
FABBRI et al. [23], first used CycleGAN to produce the restored underwater image as
training data, then an Underwater-GAN was constructed to learn a model that translates
a haze image into a high resolution image.

Generally speaking, both IFM-based solutions and CNN-based solutions have fea-
ture respective merits as well as several limitations. For methods in [13], and [14], prior
knowledge may fail in some cases, resulting in incorrect color restoration and image
detail losses. The process models built in [17, 21, 22] are relatively complicated, which
is inconvenient in practical use. Based on experimental comparison, we augment that
a relatively slim-build network could accomplish both fast processing and satisfying
results at the same time.

In this paper, we design a deep-learning-based model call efficient GAN (EGAN)
for fast and good performance in underwater image enhancement. In particular, we first
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adopt the residual network (ResNet) as the backbone of our generator, then we improve
the generator architecture by introducing two adjustments: removing batch normali-
zation (BN) and replacing convolution (Conv) kernel sizes. Those adjustments are
proved in training resource saving and image quality improving, which are demonstrated
by graphic and statistic measurements in the following contents. Besides, as a halo-effect
is found to be one of annoying collateral issues coming with deep-learning-based meth-
ods, we introduce a smooth loss function to make the artifacts less visible in output
images. Extensive qualitative and quantitative comparison experiments are conducted
with the state-of-the-art methods, showing the competitiveness of our method. 

2. Proposed method

A common feature shared by the CNN and the GAN is the ability to learn complex
nonlinear functions. Different from CNN, GAN consists of two separated CNNs to
form an adversarial architecture, as this manner pushes each of the CNN network to
improve until the whole model reaches the point of Nash equilibrium. Specifically,
there are generator network (G) and discriminator network (D) in GAN, G aims to
transform an input (raw image) into a target (enhanced image) that is close to the
ground truth (reference image), while D aims to judge whether an input is the ground
truth or the enhanced image. As shown in Fig. 1, the total structure of our EGAN con-
sists of two parts: a generator and a discriminator. The generator takes raw image as
an input and outputs the according enhanced result, which serves as the major part in
the EGAN image process procedure. Meanwhile the discriminator takes the enhanced
image and the reference image as an input, and it outputs their possible distribution.
The possible distribution tells whether an enhanced image is likely to be judged as a ref-
erence image or raw image.

2.1. Generator structure

Usually for many deep-learning-based vision tasks, more Conv layers lead to more pa-
rameters to be predicted during training, and, as a result, the trained model could sim-
ulate complicated nonlinear functions, for example the underwater image distortion
model. However, stacking Conv layer is not always a proper solution, for vanishing
emergence of gradients causing model degradation the training accuracy saturates and
the error rises [24]. To tackle this issue, HE et al. [25] proposed deep residual learning
that introduced a residual connection between Conv layers. Benefiting from that, back-
ward propagation gradients could spread a longer path through the model, and deeper
CNN structure becomes practically feasible. Inspired by that, we designed our gener-
ator (G) as shown in Fig. 1.

Firstly, the model takes a patch (64 × 64 × 3) of a raw underwater image as an input,
followed by Conv layer with 3 × 3 kernel size and 64 output feature channels. Then
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those features are activated by rectified linear unit (ReLU). For the backbone design
we borrow the layout from [19], which is first adopted for in-air dehazing. Then three
adaptations are made for underwater enhancement. Firstly, we implement 4 residual
blocks instead of 16 as originally designed, because we found that less layers could
achieve equivalent or even exceeded performance (more details shown in Section 4).
Every residual block consists of two Conv layers and one element-wise subtract layer,
with one ReLU after the first Conv. All the Conv layer outputs feature a map with
64 channels. Secondly, we replace the second Conv kernel size of 3 × 3 with 1 × 1,
based on the knowledge that small kernel size carries less parameters, hence resulting
in faster training. Besides, as feature maps are recurrently computed between residual

a

b

Fig. 1. Structures of our EGAN network. (a) Generator, and (b) discriminator.
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blocks, smaller kernel size could also favour a small image texture extraction and lead
to less halo-effect production (more details shown in Section 4). Our last adaptation
is removing all the BN layers after every Conv layer in the whole generator structure,
because, as LIM et al. [26] proved, for the relatively shallow model architecture re-
moving BN could save training time as well as promote model performance (for ex-
ample increase contrast as shown in Section 4).

Different from many U-Net [27] based methods, our generator could translate im-
age of different sizes. This merit makes the whole network more suitable for practical
application. In our EGAN generator, all Conv layers have fixed output channel number
of 64, except the last one which has 3 to form a normal picture.

2.2. Discriminator structure

The adversarial learning procedure of GAN requires another CNN model called discrim-
inator (D). Similar as the literally expression, the discriminator serves to encode both
generated and ground truth images into high dimensional vectors. Then those vectors
were judged by corresponding loss function to determine whether an input is ground
truth image or generated one. The existence of D pushes G to generate images that are
closer to ground truth, while the development of G in turn pushes D to extract more
distinct features in the inputs to facilitate more precise judgement. For the EGAN dis-
criminator we have followed the discriminated architecture guideline proposed in [28]
which contains eleven Conv layers. The first six Conv layers have an increasing num-
ber of feature channels by the factor of 2 from 64 to 2048. The next two Conv layers
decrease output feature channels to 1024 and 512, then connected with the output after
three Conv layers through residual connection. The resulting features are followed
by a dense layer and a sigmoid activation function to get the possibility distribution.
The discriminator structure is shown in Fig. 1.

2.3. Loss functions

Two different loss functions are needed for G and D training because of their different
design purposes, namely the generator loss and the discriminator loss.

2.3.1. Generator loss

As the generator aims to produce ground-truth alike images, the generator loss is de-
signed to contribute to that purpose by comparing generated images with reference im-
ages and computing the differences. In our EGAN model, we firstly adopt two loss
function items proposed in [18], depicted as the content loss and the VGG (visual ge-
ometry group network) loss. The content loss includes MSE (mean square error) loss
that computes the mean squared pixel-wise error, and the Adv (adversarial) loss that
computes the impossibility that indicates how likely an enhanced image be judged as
a reference image. VGG loss computes the mean squared error of the deep extracted
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features, with the features extracted by the VGG19 network [29]. The formulations are
depicted as follow:

(1)

(2)

(3)

where x, y mean axes along the image width and height, Ix, y represent the raw input
image, Rx, y represent the reference ground truth, W and H mean the width and the height
of the inputs. G(ꞏ) and D(ꞏ) mean the transformation function of the generator and the
discriminator operation. The φ(ꞏ)i, j mean the features extracted in the j-th Conv before
i-th MaxPooling layer in the VGG19 network.

Apart from that, we introduce a novel smooth loss for the halo-effect reduction:

(4)

where  and  mean computing the gradients along x- and y-axis. By using
the gradients of raw images as the guideline, the smooth loss helps to generate images
with less artificial noises, hence being more similar to natural ones. In Section 4 we
conducted more experiments to prove the improvement.

The whole generator loss function consists of four loss items:

(5)

where λ1–4 stands for different weight values for each loss item. We choose their op-
timal values by the following steps: firstly, we set them based on referred papers, sec-
ondly, we set other three parameters constant and adjust one parameter to find the
optimal value. Finally, we repeat the step two to find the optimal values for all lambda
parameters.

2.3.2. Discriminator loss

The discriminator loss computes the logarithmic probabilities of different discrimina-
tor outputs. As the values of D (G (I x, y)) and D (Rx, y) are between 0 and 1, the generated
probabilities were compared to 0 while the reference ones were compared to 1. Similar
as the Ladv in generator loss, the Ldis is as follows:

(6)
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3. Experiment and analysis

3.1. Preparation

3.1.1. Data

Although there are many synthetic underwater image datasets generated by CNN- or
GAN-based methods, their practicability still remains uncertain for the reason of rel-
atively similar color casting patterns and lacking of objects diversity, as shown in
Fig. 2. Through comparison, we choose the UIEBD propose in [17] for training, for it
covers a range of extreme underwater situations and contains abundant colorful objects.
The training set contains 890 raws and according reference images and 60 challenging
images. The training set contains 890 raw images with reference and other 60 challenging
images. In practice, we first separate the original 890 images into 800 and 90 subsets
for training and validation. Then we resize the training images to 112 × 112, and use
flip and rotate operation to expand the training set to 6400 in total. The rest 60 challenge
images are used for testing.

3.1.2. Training settings

Based on experimental adjustment we set the generator loss weights λ1–4 as 5, 0.001,
0.0002, and 8. For EGAN training we adopt generator pre-training for 10 epochs with
a learning rate of 0.0002, then we use adversarial training for the whole EGAN for
40 epochs with a learning rate of 0.0002 decayed by 0.5 every 10 epochs. The batch size
is 16 and the patch size is 64 × 64. For optimization we use the Adam optimizer with
Beta1 set as 0.9. The tensorflow is used for the network implementation. The whole
model is trained on a server with an NVIDIA Tesla M40 GPU of 10G memory, and
a 8G memory Intel CPU with 2.6 GHz frequency.

Fig. 2. Comparison of different underwater image datasets. The underwater imagenet synthesized by
GAN [23] and the UIEBD collected from real scenes [17].
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3.1.3. Comparing methods

For validation and test result performance we select the following state-of-the-art
methods for comparison, including 1) IFM-based methods: IBLA [14], ULAP [15],
FusionBased [13]; their results are obtained by the public available codes. 2) Deep
-learning-based methods: UWCNN [30] and Duwie [17]; their results are obtained by
the pre-trained model provided by the authors.

3.2. Experiment results

3.2.1. Evaluation on the validation set

As shown in Fig. 3, for different underwater distortions, EGAN produces enhanced
images with more natural color distribution and finer object texture restorations. Spe-
cifically, for the images in the first row, our results achieve consistent greenish tone
removal over corals regardless the distance. Similar performance can also be found in
the fifth row. Besides, in the second row our results appear in clearer textures compared
to the rest methods even including the reference image. The outstanding performance
of EGAN in color correction accuracy and texture restoration can also be found in the
third and fourth row images. Besides, PSNR and SSIM evaluation in Table 1 also con-
firm our competitiveness. To further demonstrate our competitiveness in fast image
processing, we compared referenced methods with EGAN regarding the computing
time. The experiment was conducted on single image and the result is shown in Table 2.
Although the Duwie is based on deep learning too, they use most of time for image
pre-processing. We conclude the results to the end-to-end manner of EGAN and the

Fig. 3. Comparison of validation enhancement results. From left to right: raw images, UWCNN [30],
IBLA [14], ULAP [15], FusionBased [13], Duwie [14], and our proposed EGAN, and reference images.
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generator structure adaptations we adopted: BN removal and Conv kernel replacement.
By removing BN layers, the EGAN is able to reduce the training time, which will be
a benefit for fast model training and image processing. By replacing Conv kernel size
from 3 × 3 to 1 × 1, more training and processing time were saved and less artificial
noises were produced. More details about the methods effectiveness are illustrated in
Section 4.

3.2.2. Evaluation on the test set

In the test set comparison shown in Fig. 4, our method also outperforms other methods
in detail enhancement, shown in row 4 and 5 on the fish body texture. Moreover, the
color correction is relatively more balanced as shown in row 1–4. Specifically, the out-
puts of UWCNN [30] appear dim in light intensity. Outputs of FusionBased [13], turn
out to be over compensated in red channel.

T a b l e 1. PSNR and SSIM evaluation on validation set. 

Raw UWCNN IBLA ULAP FusionBased Duwie EGAN

PSNR 16.9136 13.5984 15.0323 15.8905 16.2535 19.1679 19.4463

SSIM 0.762 0.6579 0.6365 0.7359 0.7796 0.8326 0.8637

T a b l e 2. Comparison of computing time. 

UWCNN IBLA ULAP FusionBased Duwie EGAN

30 s 526.21 s 30 s 5 s 5 s 0.01 s

Fig. 4. Comparison of test sets. From left to right: raw images, UWCNN [30], IBLA [14], ULAP [15],
FusionBased [13], Duwie [17], and our proposed EGAN.
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4. Methods effectiveness study

4.1. BN removing and Conv kernel size replacing

We started our research to make the underwater image enhancement process fast and
effective, and we adopted BN removing and Conv kernel size replacing to achieve this
goal. To further study the merits of removing BN and changing Conv kernel size in
generator structure, we conduct four experiments controlling: with or without BN in
generator; 3 × 3 or 1 × 1 kernel for second Conv in the generator residual block. We
label them as: BN + 3×3, BN + 1×1, noBN + 3×3, and noBN + 1×1. The comparing
results are shown in Fig. 5.

As shown in the original and zoomed view, there are two distinguishable differ-
ences in halo-effect and contrast. Specifically, in the second row, between column 1–2
and 3–4, the output of 1 × 1 kernel has less halo around the jellyfish, demonstrates the
effect of 1 × 1 kernel in halo-effect reducing. Comparing column 1 to 3 or 2 to 4 in

Fig. 5. Methods comparison on BN and 3 × 3 kernel size. Row 1: original view, row 2: zoomed view of
coral, and row3: zoomed view of human. 

BN + 3×3 BN + 1×1 noBN + 3×3 noBN + 1×1

T a b l e 3. Methods comparison. 

BN + 3×3 BN + 1×1 noBN + 3×3 noBN + 1×1

Training time (per epoch) 166 s 162 s 150 s 146 s

PSNR 19.2356 19.2876 19.3688 19.4463

SSIM 0.8608 0.8569 0.8629 0.8636
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row 3, we could see that noBN pictures have relatively higher contrast, showing that
removing BN could boost contrast.

As shown in Table 3, those two adaptations also individually reduce the per epoch
training time, proving the ability in efficiency boost of these two methods.

4.2. Smooth loss

The artificial noises coming along with deep-learning methods have been a common
problem. In this paper, we designed a novel smooth loss for EGAN generator. To further
demonstrate the effect of the proposed smooth loss in halo-effect alleviation, we conduct
two experiments: training with smooth loss and training without smooth loss. The de-
tailed comparison is shown in Fig. 6. As the result shows, the output with the smooth
loss has relatively invisible white halo around the jelly fish, proving the effectiveness
of our innovation. 

4.3. Generator structure

We have known that deep-learnig-based methods require a considerable amount of
training time due to the complicated network structure. The proposed EGAN is able
to achieve better enhance results in less training time, which is more suitable for prac-
tical application. For the whole generator design of EGAN, we adopt three architectural
improvements comparing to the original generator structure proposed in POGAN [19].
Namely, we first remove all BN after Conv layers, then 1 × 1 kernel is introduced to
the second Conv in the residual block. Finally we reduce the total residual block num-
ber to 4 for faster training. For generator structure comparison, we choose four similar
ResNet-based generator architectures: the original generator in POGAN [19] with 16 re-
sidual blocks as POGAN(res16), and its 4 residual block edited version as POGAN(res4),
and generator from the RoR [31] and the ESRGAN [32]. Those models are trained in
the same discriminator structure as EGAN, with same hyper-parameters settings and
loss functions and other settings. As shown in Table 4, the generator structure of  EGAN

Fig. 6. Methods comparison on the smooth loss performance, (a) without smooth loss, and (b) with smooth
loss. 

a b
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achieves the best training time and PSNR/SSIM value, approving the effectiveness of
the EGAN generator architecture.

5. Conclusion and future work

In this paper we propose an efficient generative adversarial network called EGAN for
underwater image enhancement, additionally a smooth loss function is introduced for
halo-effect alleviation. Extensive experiments are conducted to validate the effective-
ness of our entire model and its specific features. However, during our research we
also found the imperfection of our model in extreme color correction, specifically un-
der the distortion of green color drifting. As shown in Fig. 7, the raw image (Raw),

T a b l e 4. Generator structure comparison. 

POGAN(res16) POGAN(res4) RoR ESRGAN EGAN

Training time (per epoch) 253 s 166 s 167 s 186 s 147 s

PSNR 18.9979 19.2356 19.2571 19.2524 19.4463

SSIM 0.8570 0.8608 0.8562 0.8620 0.8637

Fig. 7. RGB channels comparison.

R G B

R G B

R G B
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reference image (Ori), and our result (EGAN) are listed vertically with their RGB pix-
els distribution diagrams (with R, G, B from left to right), plotted by the pixel value on
the horizontal axis and the pixel number on the vertical. From Fig. 7 we could observe
that the raw image has most of its green pixels shifted to high pixel value region, which
leads to unsatisfied result of our model because most of our training images appeared
with red channel shifting. Inadequate greenish and blueish training data are the main
reason of imperfection and we will dedicate more work on that issue in our future work.
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