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To improve the measuring accuracy in two-step phase-shifting interferometry (PSI), a new approach
combining the extreme value of interference (EVI) and the least-squares iterative algorithm (LSIA)
is proposed to extract the phase from two-frame blind phase-shifting interferograms. This method
first evaluates the phase shift between two interferograms by the EVI algorithm, and then constructs
the fitted interferogram by the addition of two interferograms after filtering the corresponding
background intensities, so the phase with high precision can be retrieved by combining two real
interferograms and this fitted interferogram using the LSIA method. The proposed algorithm ex-
pands the flexibility of the LSIA method and has the high-precision performance compared with
the existing algorithms in two-step PSI. Simulation and experiment are performed to verify the fea-
sibility of the proposed algorithm.
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1. Introduction 

Phase-shifting technique has been widely used not only in single-wavelength interfer-
ometry [1–4] but also in dual-wavelength interferometry [5–9]. In phase-shifting in-
terferometry (PSI), the accuracy of its phase imaging relies on the accuracy of the phase
shifts, which are generated by the piezoelectric transducer (PZT). However, the real
phase shifts may be different from the preset values due to the errors caused by the
miscalibration of PZT and mechanical vibration. Compared with conventional N-step
(N  3) PSI [10] that requires at least three interferograms with known phase shifts,
two-step PSI relaxes the requirements of the calibration and accuracy of the phase
shifter [11], and increases the robustness against environmental factors in practical im-
plementation. On the other hand, compared with single-frame interferometry [12, 13],
two-step PSI can resolve the phase-sign ambiguity and offer higher measuring accu-
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racy. In [14], a Fourier transform-based two-step phase demodulation method (Kreis)
is proposed, in which the phase can be extracted from two interferograms with un-
known phase shifts, but this method may be susceptible to noisy fringe patterns. In [15],
based on analyzing the fringe direction, a phase retrieval algorithm is presented by us-
ing the regularized optical-flow (OF) method. However, this algorithm for retrieving
phase is time-consuming due to the iterative operation using the Gauss–Seidel method.
In [16], a Gram–Schmidt (GS) orthonormalization algorithm is proposed for the mod-
ulating phase extraction, but this algorithm requires more than one fringe in the inter-
ferogram and its accuracy of phase extraction can be affected due to the use of two-step
approximate algorithm. In [17], a two-shot fringe pattern phase demodulation algo-
rithm is presented by combining the GS algorithm with the Hilbert–Huang transform,
improving the performance of the GS algorithm. In [18], the GS algorithm is applied
to either null testing or non-null testing modes. In [19], to achieve the phase with high
accuracy, a two-step phase demodulation algorithm is proposed based on the extreme
value of interference (EVI). However, this method does not work well when the inter-
ferograms exist in the heavy noises. In [20], a phase retrieval algorithm is presented
based on phase shift estimation in a local mask with a moderate size, but this algorithm
related to fringe analysis is time-consuming and complex, and may fail for noisy fringe
patterns.

All the existing algorithms cited above are satisfactory methods for phase retrieval
in two-step PSI, but these algorithms [14–20] meet challenges since their accuracy
of phase extraction is not high enough compared with the least-squares iterative algo-
rithm (LSIA). However, in two-step PSI, it is impossible to retrieve the phase using
the LSIA method since it generally requires a minimum of three frame phase-shifting
interferograms [21, 22]. To address this problem and improve the measuring accuracy,
a new algorithm combining the EVI algorithm and the LSIA method is proposed to ex-
tract the phase from two-frame blind phase-shifting interferograms. In this algorithm,
the phase shift between two interferograms is firstly evaluated by the EVI algorithm.
Second, using this evaluated phase shift, the fitted interferogram is constructed through
the addition of two interferograms after filtering the corresponding background inten-
sities. Finally, the phase with high accuracy can be retrieved by combining two real
interferograms and this fitted interferogram based on the LSIA method. Following, we
will illustrate the principle of the proposed algorithm, and then give its verification by
numerical simulations and experiment.

2. Principle

Schematic diagram concerning PSI for the proposed algorithm is shown in Fig. 1, in
which M and BS are reflector and beam splitter, respectively. The illumination laser
is split by BS1 into reference and object beams. The object beam illuminates the object,
and the phase shifts of reference wave are produced by a phase shifter (PS). The beams
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are combined by BS2, and the resulting interference patterns are recorded by a CMOS
camera and finally stored in an image processing system. 

In PSI, two frame blind phase-shifting interferograms can be mathematically ex-
pressed as

(1)

(2)

where m = 1, 2, ..., M, and M is the number of pixels in each frame; am, bm and φm denote
the background intensity, the modulation amplitude and the measured phase of the
interferogram in the m-th pixel, respectively; δ (except 0 and π rad) is the blind phase
shift, and η1m and η2m are additive Gaussian noise. 

In general, the background intensity am can be filtered out easily from Eqs. (1) and (2)
by using a high-pass Gaussian filter. Thus, Eqs. (1) and (2) become

(3)

(4)

By combining Eqs. (3) and (4), φm can be retrieved by an arctangent function

(5)

In Eq. (5), as long as the phase shift δ is known, the measured phase φm can be
easily obtained from two interferograms with blind phase shifts. Based on the bench-
marking EVI algorithm [19], the phase shift δ  between two interferograms can be eval-
uated by

Fig. 1. Schematic diagram concerning PSI for the proposed algorithm. BE: beam expander, BS1, BS2: beam
splitter, M1, M2: mirror, L1, L2, L3: lens, and PS: phase shifter. 
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(6)

where  is the maximum intensity of  at i-th position,  is the intensity
of  at the corresponding i-th position in   is the minimum intensity
of  at j-th position,  is the intensity of  at the corresponding j-th position
in  and S and T are the number of pixels with maximum and minimum intensity
in the interferogram  respectively. 

In two-step PSI, to further improve the phase retrieval accuracy in Eq. (5) by using
the LSIA method, the third interferogram I3m needs to be constructed firstly. Subse-
quently, by adding Eqs. (3) and (4), a new equation can be described by 

(7)

Thus, based on Eq. (7), the fitted interferogram I3m can be constructed as

(8)

It is noticeable that the phase shift in the fitted interferogram I3m is about δ/2.
Since there are two real interferograms, I1m and I2m , and a fitted interferogram I3m , the
phase can be extracted by using the LSIA method in two-step PSI. We assume that
the background intensity and the modulation amplitude do not vary with frames, then
Am = am, Bm = bmcosφm and Cm = –bmsinφm can be calculated by

(9)

where n = 1, 2, ..., N, and N = 3 is the number of phase-shifted interferograms. In Eq. (9),
δ1 = 0, δ2 = δ and δ3 = δ /2.

The measured phase can be retrieved by

φm = arctan(–Cm /Bm) (10)

Once φm is estimated with correct global sign by using Eq. (10), the phase shifts
can be determined with correct direction by using the LSIA method. We assume that
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the background intensity and the modulation amplitude do not have pixel-to-pixel var-
iation, then An = am, Bn = bmcosδn and Cn = –bmsinδn can be calculated by

(11)

The phase shifts can be determined by

δn = arctan(–Cn /Bn) (12)

The phases and the phase shifts with high accuracy can be simultaneously determined
in the proposed algorithm by using Eqs. (10) and (12) as the relative phase shifts reach
the convergence limit, which can be expressed as

(13)

where t represents the number of the iterations, and ε is a preset accuracy requirement.
The whole process of the proposed algorithm can be summarized as follows:

Step 1: Capture two frame blind phase-shifting interferograms.
Step 2: Evaluate blind phase shift δ using Eq. (6).
Step 3: Construct the fitted interferogram I3m according to Eq. (8).
Step 4: Calculate the measured phase φm using Eq. (10).
Step 5: Estimate the phase shifts δm according to Eq. (12).
Step 6: If the convergence limit in Eq. (13) is satisfied, the proposed algorithm

is terminated. Otherwise, repeat Step 4 and Step 5.

3. Simulations and discussion 

3.1. The spherical wave-front

Numerical simulations are performed to test the performance of the proposed algorithm.
Two simulated interferograms are generated according to Eqs. (1) and (2) by setting the
parameters as follows: the background intensity is am = 100exp[–0.04(x2 + y2)], and
the modulation amplitude is bm = 90exp[–0.04(x2 + y2)], respectively. In addition, the
preset threshold ε is set as 10–4.

To verify the effectiveness of the proposed algorithm in retrieving the phase of the
spherical wave-front, the measured phase of the spherical wave-front is set as φm(x, y)
= ωπ(x2 + y2), where –1.5  x, y 1.5 mm and ω is the fringe number in interferogram.
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Figures 2a and 2b respectively present two simulated interferograms of the spherical
wave-front (ω = 2) with the size of 300 × 300 pixels by setting the parameters as follows:
the phase shift δ is set to 2.0 rad; the background intensity is am = 10exp[–0.25(x2 + y2)]
+ 100, and the modulation amplitude is bm = 100exp[–0.25(x2 + y2)], respectively;
Gaussian noise with zero-mean and standard deviation σ = 1 is added to the interfero-
grams. After the blind phase shift is calculated by using the EVI algorithm, the fitted
interferogram of the spherical wave-front (ω = 2) is constructed based on Eq. (8), as
shown in Fig. 2c, and the phase shift in the fitted interferogram is about 1.0028 rad.
Subsequently, two real interferograms and the fitted interferogram are addressed with
the LSIA method, and then the wrapped and unwrapped phase maps are respectively
presented in Figs. 3a using the proposed algorithm. Figures 3b show the theoretical
wrapped and unwrapped phases of the spherical wave-front (ω = 2), respectively. 

In order to compare the accuracy of the phase retrieval with different algorithms,
the wrapped and unwrapped phases achieved with the EVI, the GS and the LSIA algo-
rithms are respectively illustrated in Figs. 3c–3e. Note that three-frame interferograms
with 0, 1.5, and 2.5 phase shifts are employed to extract the phase in the LSIA method.

a b c

Fig. 2. The spherical wave-front (ω = 2). (a, b) Two simulated phase-shifting interferograms; (c) the fitted
interferogram.

Fig. 3. Reconstructed wrapped and unwrapped phases with different algorithms for the spherical wave
-front (ω = 2). (a) The proposed algorithm, (b) theoretical calculation, (c) the EVI algorithm, (d) the
GS algorithm, and (e) the LSIA algorithm.

a
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Fig. 3. Continued.

b

c

d

e
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The simulation results show that the root mean square errors (RMSEs) of the difference
between the theoretical phase and the extracted phase with the proposed algorithm, the
EVI algorithm, the GS algorithm and the LSIA algorithm are 0.09, 0.13, 0.15 and
0.04 rad, and the corresponding processing times in our computer are 5.4, 0.24, 0.2
and 8.9 s, respectively. Due to the use of the LSIA method, the proposed algorithm
takes much longer time to retrieve the quantitative phase compared with the EVI and
the GS algorithms. But, the accuracy of phase extraction with the proposed algorithm
is higher than those with the EVI or GS algorithms since high-frequency noise can be
effectively suppressed during the iterations. In addition, the accuracy of phase extrac-
tion with the proposed algorithm is lower than that with the LSIA algorithm. The reason
is that the LSIA algorithm employs three-frame randomly phase-shifted interferograms
to extract the phase while the proposed method only uses two phase-shifted interfero-
grams to retrieve the phase.

To test the robustness of the proposed algorithm, we also investigate the influences of
the fringe numbers in interferograms, standard deviations of zero-mean Gaussian noise,

Fig. 4. RMSEs of phase extraction for the spherical wave-front with these three algorithms. (a) Corre-
sponding to different standard deviations of zero-mean Gaussian noise, (b) corresponding to different
fringe numbers in interferograms, and (c) corresponding to different phase shifts.

a

b
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and phase shift values of the RMSEs of phase retrieval, as shown in Figs. 4a–4c, respec-
tively. Figures 4a and 4b respectively show that when σ increases from 0.25 to 4.75 or
ω varies from 0.5 to 4.5, the RMSEs of phase retrieval with the proposed algorithm are
always smaller than those with the EVI or GS algorithms. In Fig. 4c, compared with
the EVI and GS algorithms, we can see that when the phase shift value is changed from
1 to 1.3 rad, the proposed algorithm has the higher RMSEs of phase retrieval; while the
phase shift value is changed from 1.3 to 2.6 rad, the proposed algorithm has the smaller
RMSEs of phase retrieval. Moreover, it can be seen from Fig. 4c that the ideal phase
shift value is close to 1.7 rad in our proposed algorithm. As a result, we can know that
the proposed algorithm is robust and has the high-precision performance.

3.2. The complex wave-front

To demonstrate the feasibility of the proposed algorithm in extracting the phase of the
complex closed-fringe patterns, Figs. 5a and 5b present two simulated fringe patterns
of the complex wave-front by setting the parameters as follows: the phase shift δ is set
to 2.4 rad; the background intensity is am = 20exp[–0.25(x2 + y2)] + 100, and the mod-

Fig. 4. Continued. 

c

a b c

Fig. 5. The complex wave-front. (a, b) Two simulated phase-shifting interferograms, and (c) the fitted
interferogram. 
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ulation amplitude is bm = 120exp[–0.25(x2 + y2)], respectively; Gaussian noise with
zero-mean and standard deviation σ = 1 is added to the interferograms. After filtering
out the background intensities in Eqs. (1) and (2), the blind phase shift is firstly evaluated
through the EVI algorithm, and then the fitted interferogram of the complex wave-front
is shown in Fig. 5c. The theoretical wrapped and continuous phases of the complex wave
-front are shown in Figs. 6a. We also illustrate the corresponding phases in Figs. 6b–6d
with different algorithms, respectively. Through the calculation, the RMSEs of phase

Fig. 6. Reconstructed wrapped and continuous phases with different algorithms for the complex wave
-front. (a) Theoretical calculation, (b) the EVI algorithm, (c) the proposed algorithm, and (d) the GS al-
gorithm. 

a

b

c
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extraction with the proposed algorithm, the EVI algorithm and the GS algorithm are 0.17,
0.23 and 0.26 rad, respectively. 

In addition, the influences of the background intensity and modulation amplitude on
the RMSEs of phase retrieval are also studied, as shown in Figs. 7a and 7b. The back-
ground intensity and modulation amplitude are  and

 in which A1 and B1 are amplitudes and A2 and B2 are
standard deviations, respectively. From Figs. 7a and 7b, we can find that the RMSEs
of phase retrieval almost linearly increase with the increasing of the background inten-
sity amplitude A1 from 2 to 20, except A2 = 0.1. However, the RMSEs of phase retrieval
are hardly affected by the modulation amplitude B1 inside the range (102, 120) since
phase calculation is not related to the modulation amplitude term.

Based on the simulations of the spherical and complex wave-fronts above, the ad-
vantages of the proposed algorithm can be summarized as: (1) it has a higher precision
than the EVI and the GS algorithms; (2) the ideal phase shift is close to 1.7 rad; (3) its
RMSEs of phase retrieval increase with the increasing of the background intensity am-

d

Fig. 6. Continued.

a b

Fig. 7. Influences of different background intensity amplitudes (a), and modulation amplitudes (b) on the
RMSEs of phase extraction for the complex wave-front with the proposed algorithm. 

am A1 A2
2 x2 y2+ – exp 100+=

bm B1 B2
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plitude while hardly affected by the modulation amplitude; (4) it is a simple, efficient
and robust algorithm.

4. Experiment

To demonstrate the practical performance of the proposed algorithm, we performed the
optical experiments of the spherical wave-front. The experimental setup is similar to that
shown in Fig. 1. A He-Ne laser with the wavelength λ = 632.8 nm is employed as an il-
lumination light source. Note that a quarter-wave plate or a glass plate placed in the ref-
erence arm is used as a phase shifter. There is a relationship between the phase shift δ
and the tilt angle θ of the glass plate, which can be defined as δ  π t(n – 1)θ2/(nλ).
Among which, t = 0.28 mm and n = 1.55 are the thickness and refractive index of the
glass plate, respectively. Based on this relationship, as the glass plate is rotated by 4°
from its normal direction, the introduced phase shift is about 2.4 rad. For the spherical
wave-front with the size of 300 × 300 pixels, an interferogram without the phase shift
as the 1st interferogram is recorded, and two interferograms with the phase shifts intro-
duced by the quarter-wave plate and the glass plate as the 2th and 3th interferograms,
are respectively recorded, one of which is presented in Fig. 8a. Following, three phase
-shifted interferograms are captured by a CMOS, respectively.

Fig. 8. The spherical wave-front. (a) One-frame real interferogram; (b) the fitted interferogram.

a b

a

Fig. 9. The spherical wave-front. (a) Reference wrapped and unwrapped phases; reconstructed wrapped
and unwrapped phases with (b) the proposed algorithm, (c) the EVI algorithm, and (d) the GS algorithm.
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In Figs. 9a, we show the reference wrapped and unwrapped phases of the spherical
wave-front obtained by the LSIA method from these three real interferograms. In order
to address two blind phase-shifting interferograms in two-step PSI, only two real inter-
ferograms are employed to retrieve the phases in the proposed, EVI and GS algorithms.
Based on the extracted phase shift using Eq. (6), the fitted interferogram for the spher-
ical wave-front is constructed, as shown in Fig. 8b. The wrapped and unwrapped phases
with the proposed, EVI and GS algorithms are presented in Figs. 9b–9d, respectively.
Through the calculation, the RMSEs of phase retrieval with the proposed algorithm,
the EVI algorithm and the GS algorithm are 0.16, 0.23 and 0.24 rad, respectively. From

Fig. 9. Continued.

b

c

d
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experimental results of the spherical wave-fronts, it can be seen that the proposed al-
gorithm has the smaller RMSE of phase retrieval, compared with the EVI and GS algo-
rithms.

5. Conclusions

In summary, to extract the phase from two-frame blind phase-shifting interferograms,
a new algorithm combining the EVI algorithm and the LSIA method has been proposed
in this paper. In this algorithm, the phase shift between two interferograms is first esti-
mated with the EVI algorithm. Second, using this estimated phase shift, the fitted inter-
ferogram is constructed by adding two interferograms after filtering the corresponding
background intensities. Finally, based on the LSIA method, the high-precision phase
can be extracted by combining two real interferograms and this fitted interferogram.
The proposed algorithm not only inherits the advantages of the EVI algorithm, but also
expands the flexibility of the LSIA method. Simulation and experimental results show
that the proposed algorithm has the high accuracy of phase retrieval compared with
the existing algorithms, such as the EVI and the GS algorithms. In a word, our proposed
algorithm offers a useful tool for high-precision phase retrieval in two-step PSI.
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