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The effect of the linewidth enhancement factor (LEF) or α-factor on two common routes to chaos
(mainly period-doubling and quasi-periodic routes) in optically injected semiconductor laser is
theoretically investigated using bifurcation diagrams. The value of the LEF is slightly modified to
examine the sensitivity of routes to chaos to any variation in the LEF. Despite the fact that LEF en-
hances chaos in the system, both routes are found to be highly insensitive to the variation in the LEF.
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1. Introduction

The linewidth enhancement factor (LEF) or the Henry factor [1] is considered as one of
the main characters that distinguishes the behavior of semiconductor lasers with respect
to other types of lasers. This factor is also known as α-factor, chirp factor, or the phase
-amplitude factor [2]. LEF has been in intensive investigation since 1982 [3–5]. Using
the self- mixing method, GUILIANI et al. [6] showed that for some lasers the α-factor
varies with the emitted power, and this variation can be correlated with the variations
in the laser linewidth. This factor has also shown a large influence on fiber dispersion
used in optical fiber communication system [7]. Various methods have been proposed
to measure this factor including self-mixing [6, 8] and different optical feedback tech-
niques [9]. Interestingly, a zero LEF has been observed in quantum dot lasers [10] which
opens the door for the enhancement of device characteristics. It is also shown in quan-
tum dot lasers, that optical injection strongly changes the behavior of the LEF [11].
The manipulation of the LEF has also been reported in an injection-locked quantum
-dash Fabry–Pérot laser [12].

In terms of the nonlinear dynamics of semiconductor lasers including stability, in-
stability and chaos, the LEF seems to play a major role in this aspect. In a previous
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work [13], we showed theoretically that the LEF has huge impact on the stability map.
In particular, the chaotic behavior is shown to be boosted as the LEF increases, which
can be utilized in cryptogaphical communications. The LEF has also been found to
play a key role in time-delay signature (TDS) in chaotic semiconductor ring lasers
(SRL), which can also be useful in optical chaotic secure communications [14]. An-
other recent study [15] has shown that varying the LEF leads to the creation of discon-
tinuities through disaggregation from the so-called shrimp-like structures. 

Chaotic synchronization has been increasingly devoted to very recent investigation
due to its possible utilization in communication security and broadband data transition
[16, 17]. The dynamical system in semiconductor lasers or any other systems transfer
from stability to chaos through a successive behavior called routes to chaos [18]. A very
recent study has introduced a general review of experimental investigation of the routes
to chaos in semiconductor laser subjected to optical feedback from a distant reflector,
including period-doubling, quasi-periodic and subharmonic routes [19]. These routes
as well as the chaos itself and other dynamical behaviors, can be studied using bifur-
cation diagram where we observe how the system changes and reacts [20, 21]. This
bifurcation has been used theoretically and experimentally to study the dynamics of
semiconductor lasers [22–25]. 

In this article, we theoretically investigate the effect of the LEF on routes to chaos,
mainly period-doubling (PD) and quasi-periodic (QP) routes using bifurcation dia-
grams.

2. Model

Our model used in this study is a standard optical injection model [26], where the output
of a single-mode semiconductor laser (known as the master laser, ML) is injected into
the cavity of another single-mode semiconductor laser (known as the slave laser, SL).
There are two major parameters that control the dynamics of the whole system. These
parameters are the injection strength K  and frequency detuning Δ f . The injection
strength is an indication of how much power is injected and can be defined as the elec-
tric field of ML relative to the electric field of the SL, (i.e., K = E1/Eo, where E1 is the
electric field of the ML and Eo is the electric field of the SL). The frequency detuning
is defined as the difference between the frequency of ML and SL, (i.e., Δ f  = f1 – fo,
where f1 is the frequency of ML and fo is the frequency of the SL).

In this study, we use the model presented in [26], which is based on Lang’s approach.
The rate equations are numerically integrated using the Runge–Kutta method to cal-
culate population inversion, electric field and phase. The theoretical power spectra are
then generated by applying fast Fourier transform (FFT) to a chosen time window of
the SL electric field time series using a computer software (Matlab). Recording the
extrema of the electric field while running the model generates the bifurcation diagrams.
The bifurcation diagrams were plotted for the extrema of the electric field as a function
of K for different operational points to examine the LEF on the routes to chaos. All the
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parameters used in our simulation were experimentally characterized in a previous study
as shown in the Table and described in detail in [26].

3. Results and discussion

To examine the effect of the LEF on the routes to chaos, we first draw the theoretical
dynamics map of the optically injected semiconductor laser at a standard value of α
(that is when α = 3). The dynamics map or stability map [26] is a two dimensional map
showing the behavior of the laser when changing the injection level K and the frequency
detuning Δ f . This map, which is shown in Fig. 1, is published in our previous work [27].
The white region indicates the stable region S, where the laser does not exhibit any
dynamics rather than a single and stable locked peak (where the slave laser is completely

T a b l e. Parameters used in our simulation as experimentally characterized [26]. 

Parameter Value

Wavelength λ 1556.6 nm 

Differential gain GN 1.4 × 10–12 m3s–1 

Carrier lifetime τs 0.43 ns

Photon lifetime τp 1.8 ps

Coupling rate η 9 × 1010 s–1

Transparency carrier density No 1.1 × 1024 m–3 

Threshold carrier density Nth 1.5 × 1024 m–3 

Normalized injection current I / Ith 2

Fig. 1. Stability map of the SL. The colors indications are as shown in the figure where, S is stable locking,
P1 is the period one dynamics, P2 is the period two dynamics, QP is the quasi-periodic dynamics and C is
chaos. The inset is a magnified part of the small chaotic island where the PD and QP routes are indicated
by white arrows.
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locked to the master [28, 29]). The very white grey indicates the period-one (P1) behavior
or the so-called limit-cycle or self-oscillation [30], where a closed trajectory is clearly
spotted in the phase space of the system (the fundamental frequency as the period). If
a new limit-cycle is emerged from an existing limit-cycle, with the period that is double
of the old one, the period-doubling (P2 or PD) behavior is then obtained [31], which
is indicated in the figure by the grey color. However, when the system shows irregular
periodicity, we call this behavior the quasi-periodic (QP) behavior, which is indicated
in the figure by the dark grey color. Finally, the chaotic behavior is shown in the black
region. Further discussion of this map with its experimental verification can be found
in our previous work [27]. 

The inset of  Fig. 1 shows the small chaotic island where we examine our two chosen
routes to chaos (the PD and QP routes). The system evolves from stability to chaos
and shows rich nonlinear dynamics and we shall investigate these two routes and see
the effect of the LEF on them. 

3.1. Period-doubling route 

Figure 2 shows the bifurcation diagram of the PD route when α = 3. This diagram is
plotted by recording the extreme of the SL electric field as a function of the injection
level K at the chosen frequency detuning (Δ f  = 6 GHz). As shown in the figure, the
system bifurcates in a doubling manner till reaching chaos. The labels a–e shown in
this figure correspond to the dynamics illustrated in Fig. 3, where we plot the dynamics
of the route in three columns; the power spectra (in logarithmic scale), the electric field
time series and the population inversion versus electric field, respectively.

In order to examine the effect of LEF on the PD routes, we tried to vary the value
of the LEF for different possible values (that is, 2.4, 2.6, 2.8, 3.2, 3.4 and 3.6). In each

Fig. 2. Bifurcation diagram of the SL dynamics as a function of the injection strength K  for the PD route at
Δ f  = 6 GHz as shown in the inset of Fig. 1. The labels represent the operating points at which the dynamics
shown in Fig. 3 are plotted. 



Effect of LEF on routes to chaos in optically injected semiconductor lasers 625
case, we run the system and draw the bifurcation diagrams (as we fix Δ f  at 6 GHz and
raise the injection power K ) along with the route dynamics shown in Fig. 2. The stand-
ard value that is used in our model for the LEF is 3 as mentioned before, so we system-
atically chose three values below 3 and other three values above 3. The step between
these values is meant to be small so that the whole dynamics map does not change sig-
nificantly. Choosing high or low values of LEF could lead to a considerable change
so that the chaotic island (where we examine the routes) may totally disappear, see [13]
for more details. Therefore, the change in LEF was meant to be small to investigate
the sensitivity of the routes to any variation in the LEF.

Figure 4 shows the bifurcation diagrams for the six values of the LEF. It can be seen
from the figure that the route gets shorter (the chaos appears at lower injection level)

Fig. 3. The power spectra (first column), the electric field time series (second column) and the population
inversion versus electric field (third column) for the operating points shown in Fig. 2.
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Fig. 4. Bifurcation diagrams of the PD route when the LEF is changed from 2.4 to 3.6. Note that Δ f  =
= 6 GHz and K is the varied parameter in the bifurcation diagrams. 

Fig. 5. The population inversion versus electric field for the PD route at different values of the LEF (col-
umns), when K = 0.04, 0.08, 0.99, 0.112, 0.12 (rows), respectively.
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as the value of the LEF increases. Note that chaos can be recognized by the appearance
of many peaks in the spectra, i.e. many dots in the bifurcation diagrams at a point in
which there is no sign for the route anywhere behind. These points are roughly indi-
cated by the grey lines in the figure. This shortness of the routes and the appearance
of chaos earlier is clearly due to the fact that the LEF enhances the nonlinear dynamics
in general [13], which means that the chaos island shown in the inset of  Fig. 1 becomes
slightly bigger as the value of the LEF increased. In terms of the PD route itself, it
seems that the route is not noticeably affected by the changing of the LEF. That is to
say, although the LEF enhances the chaotic behavior, the transition routes to chaos re-
main almost unaffected and the doubling behavior is still evident in all cases.

To have a closer look at the PD route under these values of the LEF, we plotted the
population inversion as a function of field amplitude when K = 0.04, 0.08, 0.99, 0.112,
and 0.12 (these are the rows), as shown in Fig. 5. The series of K values are chosen
according to bifurcation diagrams for the best illustration of the route and kept the same
so we can see the sensitivity of the route to the change in the LEF. Again, the route in
general seems not to be affected by changing the LEF. However, the route looks ideal
in some cases (at α = 2.6 and 3.6). This might be attributed to the chosen operating
point rather than to any other reasons.

3.2. Quasi-periodic route

The QP route is another famous route to chaos where the system evolves to chaos in
a quasi-periodic manner as we described before. Figure 6 shows the bifurcation dia-
gram of the QP route when α = 3. This bifurcation diagram is plotted at frequency de-
tuning Δ f  = 5 GHz, which corresponds to the route as shown in the inset of Fig. 1.

Fig. 6.  Bifurcation diagram of the SL dynamics as a function of the injection strength K for the QP route
at Δ f  = 5 GHz as shown in the inset of  Fig. 1. The labels represent the operating points at which the dy-
namics shown in Fig. 7 are plotted. 
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Likewise, the labels a–e shown in this figure correspond to the dynamics illustrated
in Fig. 7. The periodic behavior is clearly shown in the bifurcation diagram and also
in the power spectra, the time series and the population inversion. This behavior can
be distinguished by the appearance of additional peaks in a systematic manner, i.e. that
is the appearance of two incommensurate frequencies. This can also be noticed in the
electric field time series as different periods and in the population inversion trajectory
as additional circles. In contrast to the QP behaviors, the chaotic behavior can be rec-
ognized as the emergent of many peaks in a hectic manner. That is reflected on the
electric field time series and population inversion trajectory as complete mess with no
sign of order or periodicity. 

Fig. 7.  The power spectra (first column), the electric field time series (second column) and the population
inversion versus electric field (third column) for the operating points shown in Fig. 6.
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Fig. 8. Bifurcation diagrams of the QP route when the LEF is changed from 2.4 to 3.6. Note that Δ f  =
= 5 GHz and K is the varied parameter in the bifurcation diagrams.

Fig. 9. The population inversion versus electric field for the QP route at different values of the LEF (col-
umns), when K = 0.04, 0.08, 0.99, 0.112, 0.12 (rows), respectively. 
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We repeat the same examination by plotting the bifurcation diagrams at the six dif-
ferent values of the LEF. Figure 8 shows the bifurcation diagrams at the chosen values
of the LEF for the QP route. Once more, as the LEF increases, the QP route becomes
shorter and the chaos is reached earlier for the same reason mentioned before. As the
previous route, the QP route seems to be more or less independent when changing
the LEF. This fact is further proved by plotting the population inversion as a function
of field amplitude (when K = 0.04, 0.08, 0.99, 0.112, and 0.12) as shown in Fig. 9. 

We can see that routes to chaos almost maintain themselves regardless of the mod-
ification in the stability map (i.e. the slight change in the LEF). This raises more ques-
tions about the dynamics itself and the carrier density inside the laser cavity, which
can be investigated in future along with the attempt to verify these findings experi-
mentally. 

4. Conclusions

We have theoretically investigated the effect of the LEF on two common routes to chaos
(PD and QP). Using bifurcation diagrams, we showed that as the LEF enhances nonlinear
dynamics in the system, both routes to chaos appear to be unaffected by the variation in
the LEF factor. This independence could be utilized in some communication applica-
tions where the routes to chaos are used in optical synchronization. Further experimental
verification of this relation between the LEF and the routes to chaos is recommended.
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