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In this study, a submicron-particles-arrayed optical storage disk was fabricated by the spin coating
method. Moreover, we have formed a multi-valued pit by irradiating linearly polarized laser beams
at multiple angles (0° and 90°). The optical setup has the semiconductor laser (λ = 637 nm) for
reconstructing and the SHG-YVO4 laser (λ = 532 nm) for recording. The optical setup measured
the submicron-particles-arrayed optical storage as a confocal image by 2D scanning with a motor-
ized stage.
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1. Introduction

Today, the amount of information handled is exponentially increasing with the develop-
ment of information-related equipment. Under such circumstances, the optical disk stor-
age is indispensable as a device for recording a large amount of information. There are
several ways to improve this performance. There are methods such as bit reduction [1, 2],
polarization multiplexed recording [3–5], multiplexing of recording wavelength [6, 7],
and lamination of recording layers [8–12]. There are also optical memories that use tech-
nologies such as holograms. Our laboratory has been currently investigating an optical
storage system using submicron particles [13–19]. We have verified a jitter-free single
-layered storage disk system [20–26] using 500 nm-diameter particles. The particles are
arranged on a linear groove [27]. We described a method of data storage using submicron
particles as recordable pits with a confocal microscope [28, 29].

In this paper, we propose a new design of multi-valued encoding mass storage with-
out jitter. Submicron particles are arranged on a plane and multi-valued recording is
performed for this. To this goal, we have adopted two approaches: one is the buffer
ring, which is a gap between the submicron particles. This is called buffering, which
is a non-photosensitive area; the other is polarization-multiplexing bit-data recording
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for multi-valued encodes. Since the buffer ring enhances the particle’s shape contrast,
for data pickup the confocal microscope can also measure submicron particles under
its spatial resolution. Polarization multiplex recording can be realized by irradiating
a single particle with a linearly polarized laser beam at multiple angles. We verified
the multi-level-pit by writing two bit-data on one particle. The storage system proposed
in this research and the conventional optical memory are briefly compared. Conven-
tional optical discs use physical irregularities and differences in the reflectance of ma-
terials as pits. In this research, the submicron-particle is used as a pit, a clock signal
is extracted from the shape signal of the submicron particle itself. Regeneration signal
is generated from that signal, thereby realizing storage without jitter. This submicron
particle jitter-free data storage system is a concept that can be expanded to a jitter-free
microhologram system using submicron particles.

2. Experimental procedure

2.1. Sample preparation

The first section describes how to fabricate submicron-particle-arrayed optical storage
disks and their particle’s characteristics. Figure 1 illustrates a process to fabricate the
submicron-particles-arrayed optical storage disk. A solution containing submicron par-
ticle was dropped onto the substrate by spin coating: particles are arranged on a cleaned
glass substrate. We used Fluoresbrite® Polychromatic Red Microspheres (manufactured
by Polysciences, Inc.). The 500 nm polystyrene particle contains xanthene dyes. It has
strong absorption, both in a 525 nm excitation wavelength and in a 565 nm fluores-
cence wavelength. The spin rate was 1st: 500 rpm for 30 sec, 2nd: 1000 rpm for 30 sec.
The sample was dried up naturally.

Fig. 1. The fabrication process of submicron-particles-arrayed optical storage by spin coating.
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2.2. Experimental setup

The second section describes the confocal optical system for bit data recording/read-
ing. Figure 2 presents a schematic of the optical setup for the submicron-particles-ar-

Fig. 2. Recording/reproducing optical system incorporating a confocal microscope.

Fig. 3. Optical axis resolution of the confocal microscope when a mirror is installed instead of the sample.
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rayed optical storage. The data recording and reading apparatus with the reflection
-type confocal scanning microscope has two laser light sources: a semiconductor laser
(λ = 637 nm) and a SHG-YVO4 laser (λ = 532 nm), respectively. The semiconductor
laser beam (λ = 637 nm), which passes through the beam expander, focuses on the sam-
ple surface through the objective lens (NA = 0.9). The optical system measured the
confocal reflection signal from the surface of the sample. The axial spatial resolution
of the conventional confocal microscope was pre-measured by scanning a mirror instead
of the disk sample. Figure 3 shows a confocal signal along the optical axis. The axial
resolution, which was defined as the full width at half maximum (FWHM), measured
about 700 nm. It was much larger than the diameter (500 nm) of the particles. However,
even the conventional microscope can resolve consecutive particles. This is because
the buffer ring will help to improve the S/N of the reflected signal and the resulting
contrast of the confocal image.

2.3. Experimental method

The third section describes the experiments of actual sample preparation, polarization
multiplex recording, and data reconstruction. Figure 4 shows submicron-particles-ar-
rayed optical storage with non-photosensitive buffer ring (of tens of nanometer width)
around particles. In this study, the optical setup irradiated with xanthene-based sub-
micron particles of two different linearly polarized beams (0°, 90°). We verified that
each polarized laser beam induces nonlinear dielectric polarization components, and
the reconstructing signal can be generated from the measured image. The 2D scanning
of the optical storage appearance measured the image of three aligned submicron
particles selected. Linearly polarized laser beam illuminated the submicron particle for

700 nm

Fig. 4. AFM measurement image of submicron-particles-arrayed optical storage. 
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recording. The Table shows the details of the recording. After that, the sample was
2D scanned in the same range as the surface measurement image before recording, and
the surface signal was measured and imaged. 

3. Results

In the final section we describe the performance of the polarization multiplexed re-
cording for multi-valued encoding. For the clock signal, we set an arbitrary threshold
in the confocal reflection signal in the scan region. The signal generates the non-return
-to-zero. We obtained the bit decision signal by taking the difference between the sig-
nals before and after recording. Figures 5a and 5b shows the images before and after
recording with the measurement’s laser at 0°. Figures 5c and 5d similarly shows the
image at the measurement’s laser at 90°. The part surrounded by the dotted line is the

T a b l e. Details of polarization multiplexed recording on micro-particles-arrayed storage 

Submicron-particles position Left Center Right

Laser power (0°) 20 μW 20 μW None

Laser power (90°) 11 μW None

Laser irradiation time 30 sec

Laser frequency 4000 Hz

Fig. 5. Sample measurement image and scan area when the measurement laser angle is 0°: before (a) and
after (b) recording. Sample measurement image and scan area when the measurement laser angle is 90°:
before (c) and after (d) recording. 
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Fig. 6. Measurement laser generation of the clock signal, bit decision signal, and regeneration signal from
scan area before and after recording at 0°.
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Fig. 7. Measurement laser generation of the clock signal, bit decision signal, and regeneration signal from
scan area before and after recording at 90°.
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position of the submicron particle, and the black straight line is the scan area for ex-
tracting the primary signal. Figures 6 and 7 show images obtained by extracting one
-dimensional signals from the scan area and generating clock signals, bit decision sig-
nals, and regeneration signals, respectively. Figures 6 and 7 are explained in order from
the top. The top shows the positions of recorded and unrecorded submicron particles.
It is a recorded submicron particle whose dark green laser is irradiated. The following
graph shows the surface measurement signal before and after recording. An arbitrary
threshold is set on this graph. The clock signal in the bottom figure corresponds to this.
The following graph shows the difference between the surface measurement signal be-
fore and after recording. The decision level is set on this graph. The decision signal in
the bottom figure corresponds to this. In the figure at the bottom, the clock signal and
the decision signal are AND to generate a regeneration signal. In Fig. 7, there is a part
where one clock signal has a two-bit decision signal. However, the part of the decision
signal was set to 0 due to an error in the focal position during measurement.

4. Conclusions

To summarize the results, the regeneration signal was (1 1 0) when the linear polarization
of the measuring laser was 0°, and the regeneration signal was (1 0 0) when the linear
polarization of the measuring laser was 0°. In other words, two digital levels were re-
corded and reproduced for one submicron particle. Therefore, the success of multi-valued
-submicron-particles by polarization multiple recording was confirmed. The S/N ratio
was about 6 dB when calculated from Fig. 5 of the experimental results. In the method
of this report, the data density and S/N ratio depend on the size of the submicron particle
and the NA of the objective lens. The theoretical data density was about 7.76 Tbit/mm2

based on Fig. 4 and the experimental results that double the recording are possible on
one submicron particle.
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