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In this paper we present a technique to measure the radius of curvature of a test sphere based on
the relation between acquired images of a circular cosine fringe pattern and size of virtual image
formed on the calibration test surface. Radius of curvature is calculated with the exact equation
proposed, using the parameters of the optical setup. Fringe pattern evaluation was performed by
locating extrema indices. The mathematical formulation as well as the experimental setup and re-
sults are presented. After applying a linear fit algorithm to the data as a method of compensation,
obtained results show an error within the tolerance established by the ISO 10343 specifications. 
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1. Introduction

Human cornea is responsible for more than 70% of the total eye’s refractive power [1],
what makes it a vital anatomical structure to carry out the vision process. A correct
image formation of focused images on the retina photoreceptors is a state of refraction
called emmetropia. When a refractive error is present and the eye is unable to bring
parallel light rays from a distant object into focus, the condition is referred to as
ametropia [2]. There are three basic defocus conditions that may produce it: myopia,
hyperopia and astigmatism [3]. All of these refractive errors are classified as low-order [4]
or also called primary aberrations [5] and contribute around 90% to overall wave aber-
rations in the human eye [6]. Astigmatism, for example, is not a pathologic state but
rather a defect result from the irregularities in the radius of curvature of the cornea,
due to anatomy variations; most people have some degree of astigmatism [7,8]. 
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Through a suitable refractive evaluation, these refractive errors can be corrected
either with spectacles, contact lenses or refractive surgery. Nowadays a variety of in-
struments are available for the evaluation of the eye’s refractive condition to assist eye
care professionals. One of these devices is known as an ophthalmometer, a non-contact
apparatus designed to measure the size of an image formed on the cornea (a convex
reflecting surface), and from this data it calculates the curvature radii in the central
part of the anterior corneal surface. The method of examining a patient’s cornea with
an ophthalmometer is called keratometry. Within the main goals of this procedure are:
determining refractive power in diopters, location, magnitude, and direction of ocular
astigmatism, assisting in the fitting of contact lenses, and in some cases measuring back
optic zone curvature of contact lenses [9,10]. 

The ophthalmometer also called keratometer is restricted to measure the apical zone
between 3–4 mm diameter depending upon corneal curvature [11]. These devices can
be divided in two main groups: manual and automatic. Within the manual group are the
Bausch & Lomb, Helmholtz–Littman, Javal–Schiotz, Haag–Streit, Chamber–Inskeep.
The automatic ones are the optoelectronic automated keratometers [12]. Measurements
with manual ophthalmometers are affected by nystagmoid movements, which is why
most of them apply the doubling principle using prisms and can be subclassified in
one and two position keratometers. The one position keratometer allows measuring two
orthogonal meridians without rotating the instrument. Two position keratometers [13]
require a 90° rotation to measure each meridian separately which makes it more sen-
sitive to detect irregular astigmatism [14].

Ophthalmometers apply the approximated keratometer equation to estimate cur-
vature radii of the cornea based on the image formation on a spherical convex mirror
by paraxial optics. This method considers that the formed virtual image is placed at
the focal plane of the mirror, but in reality, the distance between the object and where
the virtual image actually forms is shorter than the distance between object and focal
plane. For this reason, the measured curvature radii will be smaller than the real value.
The inherent error can be up to 0.35% (0.03 mm) [15]. In this article, an exact equation
is proposed along with a method that provides advantages over the instruments cur-
rently used.

2. Proposed method

2.1. Equation deduction

An object with height h is placed in front of a spherical mirror with a center of cur-
vature C, forming a virtual image h', as shown in Fig. 1. The distance between vertex
and object is given by l, and distance between vertex and virtual image by l'.

Considering, as shown in the literature [16-22], that the virtual image forms on fo-
cus, the radii of curvature can be calculated with the general approximated keratometer
equation shown as follows:

r = 2h' l /h (1)
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However, there is a difference between the distance where the image actually forms
and the focal length of the mirror as seen in Fig. 2. 

The error produced by this difference can be reduced by increasing the object-to-image
distance l or compensated by adding the error to the keratometry measurement [23,24].
Nevertheless, in order to minimize inaccuracies in a measurement system using Eq. (1),
we propose an analysis based on the premise that light rays that form an image on
a convex spherical mirror, follow a straight line as an optical path. It is possible to use
equations on the straight lines that form the image and the point where it intersects to
obtain an exact approximation of the radius of curvature of the spherical surface [25].
Following Fig. 3:

Fig. 1. Virtual image formation by a convex spherical mirror with image placed at focal plane.

Fig. 2. Distance difference between focal plane and vertex to true place of virtual image formation.

Fig. 3. Straight lines that form the virtual image.
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Taking the (0, 0) coordinate as the mirror’s vertex and x1 = –l, y1 = h, x2 = r, and
y2 = 0:

(2)

Straight line general equation is defined as y = mx + b from which the slope m was
obtained and y = 0, x = r:

(3a)

(3b)

straight-line equation for (hr) is:

(4)

similar analysis for (h' f ) being x1 = l', y1 = h', x2 = f = r /2, and y2 = 0:

(5a)

(5b)

(5c)

(5d)

combining equations (4) and (5), we obtain

(6)

intersection point between two straight lines occurs when x = l':

(7)

applying the lateral magnification equation:

h' /h = l' / l (8)

we get an exact equation for the radii of curvature:

(9)
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In the case of a convex mirror, distance l is negative; therefore, the equation has
a negative sign. Equation (9) is function of the known object’s height, virtual image’s
height, and distance from object to vertex, which are data that can be measured exper-
imentally. 

2.2. Proposed technique

For the practical implementation of the proposed method, we use a circular fringe co-
sine pattern as an equivalent mire of a keratometer [26] (which is continuous unlike
those used in Placido systems that follow a binary profile [27]). This pattern was re-
corded in a black-and-white film (P) Kodak Tri-X pan TXT4164, through an LCD mon-
itor LG MD2362D and a large format camera Linhof -Technika V. The pattern was
generated with MATLab® following Eq. (10) and is shown in Fig. 4.

f (x p, y p) = ap + bp cos(2π ∙ r (xp, yp) /R) γ (10)

The pattern recorded in the film is illuminated with a white LED luminescent
panel (LS) 10 × 10 cm. Also, in order to emulate a healthy cornea, a calibration
sphere (CS) of a NIDEK® Magellan Mapper corneal topographer with a nominal cur-

Fig. 4. Digital fringe cosine pattern with values a p, b p = 128, a gamma value γ = 1.5 and a radius value
R = 68 pixels and (xp , yp ) is the pixel coordinate of the LCD.

Fig. 5. Schematic of the proposed experimental set-up.
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vature radius of 7.865 mm, was mounted in a micrometric one direction translation
stage. The pattern forms a virtual, erect and diminished image and it is captured with
a CCD camera (C) with 1.25 MP effective pixels, using a telecentric lens (L). To main-
tain orthogonality between illuminated pattern, sphere and cam, we use an optical beam
splitter 40/60 (BS). A set up scheme is shown in Fig. 5. Images were captured by the
camera and processed with LabVIEW™ and IMAQ Vision®.

2.3. Image analysis and data extraction

The main goal of the proposed technique is measuring the size of the virtual image
and mire. Since the mire is a negative cosine pattern, there will be a maximum and
minimum in all the contained periods; minima and maxima locations can be radially
detected throughout 360°. 

The pattern was spatially designed to contain a signal with fourteen extrema locations
(not counting the center), where theoretically 5040 points can be analyzed. A radial
line profile was performed, producing a signal with an amplitude range of 256 gray levels
that correspond to the 8 bits pixel intensity of the experimental image. Basically, the
radial line profile can be implemented to recover one dimensional signal for any par-
ticular interest angle. 

A minima and maxima extraction algorithm based on persistence [28] was applied
to the signals of interest. Once extrema locations have been found, (x, y) coordinates
of each can be extracted from the image. Finally taking these coordinates (maxima
marked in yellow circles in Fig. 6) and with the pattern center coordinate (k, b), the
Pythagorean theorem can be applied to each triangle formed by these points using the
following equation:

(x – b)2 + ( y – k)2 = r2 (11)

Knowing h, h' size for each maximum and minimum points, all parameters of Eq. (9)
are known and the radius of curvature is calculated for each max and min points. 

Fig. 6. Scheme to calculate h and h' through the Pythagorean theorem.
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3. Experimental setup

3.1. Image analysis and data extraction

Taking into account the nominal radius of curvature of the test sphere, the mire was
placed at a distance l = 130 mm following the equations of image formation in a convex
mirror [29] to obtain a virtual image height of 1.5 mm, and therefore analyze a circular
area with 3 mm diameter. Distance between lens and calibration sphere is equal to the
nominal working distance (WD) of the lens 173 mm. It can be displaced with the mi-
crometric translation stage, to adjust the location of the sphere until a horizontal field
of view of 9.6 mm is reached, which is established by the manufacturer at the WD [30],
ensuring that the components were at the proposed distances. Figure 7a shows exper-
imental setup from a top view and all distances are shown in Fig. 7b. The mire image
was captured by a f 18 mm double Gauss lens and the same cam.

3.2. Diopters and ophthalmic measurements

In optometric practice, eye care professionals like optometrists or opticians often are
more related with keratometric diopters (D ), instead of curvature radius. To calculate
dioptric power, Eq. (12) should be applied [31], using an index of refraction n2 = 1.3375
which is the value used with most keratometers [32].

(12)

When the refractive power of a cornea is identical in all meridians, it can be consid-
ered as a perfect spherical. In regular toric corneas there are two perpendicular merid-
ians with the highest or lowest refractive power [33]. These are called primary (180°)
and secondary (90°). Within types of astigmatism are “with the rule” (WTR) which
occurs when the flattest corneal meridian is lying near the primary one, and “against
the rule” (ATR) which is when the flattest meridian is along the secondary one. There
is also oblique astigmatism and it occurs when the principal meridians are from 30°
to 60° and 120° to 150° [34]. The last case is the irregular astigmatism, in which the

a b

Fig. 7. (a) Experimental setup top view, (b) distance between components. 

D
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principal meridians of the cornea are not perpendicular to one another [35]; and in its
presence, mire pattern images will be distorted [36]. 

We performed measurements along these principal meridians, and at the ones lying
at 45° and 135° as possible locations in the cases of oblique astigmatism. However,
since it is a pattern with radial symmetry, there is a possibility of making a line profile
at any angle on the pattern of the captured virtual image. Two images were used and
52 measurements taken in order to compute the statistical parameters in a representa-
tive sample. 

4. Experimental results

4.1. Object and virtual image signals

The variables h and h'  in Eq. (1) were obtained from the object and virtual images,
presented in Fig. 8. 

A Gaussian smoothing filter with a kernel size of 5 was applied to the captured
image for de-noising and to eliminate small abrupt transitions in the gray scale values,
which affected the minimum location. The kernel values are specified in Fig. 9. 

Figures 10 and 11 show signals corresponding to the object and virtual image from
primary meridian and their respective max and min locations. The abscissa axis rep-
resents the analyzed diameter (analyzed meridian distance).

Fig. 8. (a) Gray scale image captured of the pattern, (b) gray scale image captured of virtual image on
the test sphere.

a b

Fig. 9. Gaussian smoothing filter kernel values. 
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4.2. Measurements results with test sphere

Using the signals corresponding to the four meridians (primary, secondary, and ob-
liques), the radii of curvature was obtained for each pair of heights found h, h'. Since
measurements obtained first-hand (raw data) were out of tolerance according to
ISO10343 [38], it was necessary to perform a linear fit by least squares method to each
data set, to compensate the measurements according to the general line: 

Radj = mRmeas + b (13)

where Radj is the adjusted power value, Rmeas is the measured radii of curvature, m is
the slope of a straight line, and b is the intersection point. The values obtained for the

Fig. 10. Max & min locations in red points from object signal.

Fig. 11. Max & min locations in red points from virtual image signal.
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primary meridian are: m = –0.00077 and b = 7.85794. In Fig. 12, the linear fit, raw data
and ideal linear fit can be visualized.

A total of fifty-two error values were used to calculate the accuracy and precision
of the proposed method. Other parameters as: root mean square (RMS) Eq. (14) [37],
root mean square error (RMS Err) Eq. (16), mean Eq. (15), mean error Eq. (17) and
standard deviation were also determined. The ISO 10343 [38] standard establishes
twice the standard deviation as the accuracy ±0.05 mm. The main statistic values are
presented in Table 1. In all principal meridians, the adjusted measurements error values
are within ISO10343.

(14)

(15)

Fig. 12. Black crosses represent raw measurements, the blue circles data are fitted and the red line an ideal
linear fit to the measurements in the primary meridian. 

T a b l e 1. Compensate statistics values computed with the exact proposed equation (9).

Statistics parameters

Meridian RMS [mm] RMS Err [mm] Mean [mm] Mean Err [mm] Diopters D Diopters Err 2σ [mm]

180° 7.8384 0.0311301 7.83845 0.026593 43.0573 0.1721 0.03

90° 7.8573 0.0139087 7.85735 0.011515 42.9536 0.0769 0.02

45° 7.8484 0.0298887 7.8484 0.024724 43.003 0.1648 0.03

135° 7.8176 0.0511061 7.81758 0.047423 43.1723 0.2825 0.05

RMS
1
n

------- xi
2

i 0=

n 1–

=

RMS Err
1
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------- xi x̂i– 2

i 1=

n
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(16)

(17)

(18)

where xi are the values of adjusted curvature radii and  is the nominal true value of
the test sphere and n in the number of samples.

As can be seen in Fig. 12, most of the adjusted data represented by the blue circles
are below the ideal adjustment (nominal radius of curvature of the sphere). This oc-
curred in the other analyzed meridians, therefore, the mean values presented in Table 1
are less than the nominal value. Figure 13 shows an error graph obtained after meas-
urement compensation in the primary meridian.

In order to verify the effectiveness of the proposed equation, the same procedure
was carried out applying the approximate equation of the keratometer (Eq. (1)). This
equation does not contain the subtraction of the height of the virtual image from the
object height. Equation (1) gives values of radius of curvature smaller than it should
be, therefore, the error in the mean of each meridian is larger than those presented in
Table 1 where the results were obtained using the exact Eq. (9).

A summary of the statistical values obtained is shown in Table 2.
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Fig. 13. Obtained result error for adjusted radii of curvature in the primary meridian.
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It is evident that the values obtained by computing the results with the approximate
equation are outside the tolerance of the standard ISO 10343, leading to errors above 1%.

5. Conclusions

A method to measure radius of curvature in a calibration sphere, based on an exact
equation, was presented. The experimental setup consists of a few elements that are
generally affordable. Basically, the proposed method only requires two images, one of
the circular fringe pattern mire and the virtual image formed by specular reflection on
the test sphere. From these two pictures, a software developed in LabVIEW® obtains
a line profile of the principal meridians, thus extracting four signals. An extrema de-
tection algorithm is applied, where their position (x, y) coordinates are obtained, and
through the Pythagorean theorem object size h and virtual image size h'  are calculated. 

Substituting values of h'  and h in Eq. (9) and using the known distance l from the
calibration sphere to the pattern, the radius of curvature was calculated. After data com-
pensation, the proposed formula and experimental setup were used under the limits
marked by ISO 10343. Since the pattern displayed is a cosine, there is a possibility of
performing a radial analysis; in addition, the pattern will be modulated by the presence
of any kind of aberration, being able to detect and locate regular or irregular astigma-
tism without the need to adjust the mire as in manual keratometers. The implemented
algorithm has such low computing time that the software could be used in a real ap-
plication or for commercial use. 

Some improvements can be implemented in the system, such as an automated align-
ment using motorized translation stages instead of manual ones, along with a high-res-
olution camera. Further investigation and experimental setup changes are contemplated
for future work to carry out measurements of corneas in vivo. One of the main changes
to be made is the implementation of an automatic system for aligning the center of the
pattern with respect to the vertex of the cornea using a head positioning fixture com-
plemented by an optimal fixation target controlled with a (x, y, z) scroll mount to move
the pattern. To take into account the effects of asphericity, toricity and spherical aber-
ration of the real corneas, a frequency modulation of the cosine pattern will be devel-
oped in order to maintain same rings size outside the central corneal zone. In addition,
a compensation using a null test approach should be made. The implemented algorithm

T a b l e 2. Compensate statistics values computed by approximated keratometer equation (1).

Statistics parameters

Meridian RMS [mm] RMSE [mm] Mean [mm] Mean Err [mm] Diopters D Diopters Err 2σ [mm]

180° 7.64688 0.227213 7.64662 0.21838 44.1416 1.28233 0.44

90° 7.62154 0.245705 7.62147 0.24353 44.284 1.38662 0.49

45° 7.6113 0.25432 7.61128 0.25372 44.3424 1.43592 0.43

135° 7.5834 0.282156 7.58338 0.28161 44.5055 1.59872 0.56
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has such low computing time that the software could be used in a real application for
commercial use. 
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