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When cameras are used in aerial photography, satellite imaging or other scenes, the motion of the
observational target causes image blur. The corresponding motion compensation systems often
present some response delay. Thus, we introduce effective and fast motion prediction for the target
to achieve steady real-time motion compensation. We first analyze the target motion states to pro-
pose a fast and robust prediction method based on the least square support vector machine algo-
rithm. Then, we evaluate the performance between ours and other state-of-the-art methods through
experiments. Experimental results confirm that the proposed method provides a fast and robust pre-
diction for target motion. At last, we embed our method with dual-resolution camera system to per-
form high-quality motion compensation effect in real time.

Keywords: motion compensation, motion prediction, dual-resolution camera system, least square support
vector machine.

1. Introduction

When a camera images to a moving target, the movement of the observational target
causes motion blur, rendering compensation essential under such conditions.

Many compensation methods have been proposed to address such motion blur.
They can be categorized as those that compensate motion blur [1–7] using the sensor
and system which are made to follow the moving object, and those that restore the de-
teriorated image in post-processing [5,6,8–12]. As a method of the former category,
time delayed integration (TDI) extends the exposure time virtually [1]. So with the tar-
get speed increasing, every stage of TDI exposure time will decrease which limits prac-
tical application. HAYAKAWA et al. [7] propose a real-time compensation system with
optical gaze control using a galvanometer mirror. Another method of the former cat-
egory is based on optical image stabilization [2,3] with lower accuracy. As for the latter
category, blind deconvolution [6,8,9] estimates point spread function from captured
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images offline. Motion vectors can also be easily got [5,10–12] to achieve faster com-
pensation. Different from getting motion vectors by using a hardware (flutter shutter) [5],
ZHONG et al. [11] applied motion estimation technology which also can be named as
electronic image stabilization. KUMAR et al. [12] explored a faster motion estimation
method for image stabilization. Obviously the latter category cannot capture real-time
restored images and the former needs precision instruments and is limited by the object
speed. Generally, the former is better than the latter because it can compensate the ob-
ject motion at once, but the latter gets more accurate motion vectors. Thus, we combine
motion prediction algorithms integrated with electronic image stabilization methods
to propose a new motion compensation technology which accesses advantages of both
the former and the latter.

Traditional motion prediction algorithms [13–18] include the autoregressive inte-
grated moving average (ARIMA) model, Kalman filter, least squares support vector
machine (LSSVM) and Markov model etc. PREVOST et al. [13] apply extended Kalman
filter to moving object trajectory prediction by introducing nonlinear units. FU et al. [14]
combine genetic algorithm with LSSVM to converge more quickly. ZHAO et al. [15]
explore the second order Markov model for motion prediction which associates the cur-
rent state with historical data to improve the model robustness under sudden changes.
GUO et al. [16] update a data-driven ARIMA model to predict vehicle velocity by col-
lecting real-time historical data. Least squares support vector machine (LSSVM) maps
data onto a high-dimensional space before modeling, thus being able to handle complex
systems.

Recently, motion prediction algorithms based on neural networks [19,20] have
been devised to provide accurate results. For instance, the backpropagation neural net-
work (BPNN) uses neuron superposition during calculations and nonlinear activation
to minimize the error between the predicted and true values. CHENG et al. [20] simplify
network structure for accelerating ship motion prediction. Similarly, long short-term
memory (LSTM) networks [21, 22] use approach such as forgotten door mechanism
for combining past cells states to determine the current cell state. LSTM method [22]
combing with state refinement enables researchers to predict complex pedestrian mo-
tion trajectory. Clearly, LSTM networks are more robust than BPNNs. Overall, the ro-
bustness and accuracy achieved by neural networks are higher than those achieved by
conventional algorithms, but the neural network complexity is also higher.

So we introduce a motion prediction model leveraging both complexity and accuracy.
After analyzing the states of a moving target in different situations, we propose an im-
proved LSSVM for motion prediction. We then compare the proposed method with
conventional algorithms and neural networks, namely, ARIMA model [16], Kalman
filter [17], online LSSVM [18], BPNN [20] and LSTM network [21]. The comparison
results show that the proposed LSSVM outperforms the other methods regarding pre-
diction speed and accuracy. We finally develop the corresponding dual-resolution cam-
era system and realize our algorithm based on this system which achieves effective
motion compensation in real time.
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2. Analysis

In this section, we explain the reason of using motion prediction combined with motion
vector estimation which can achieve real-time motion compensation.

Since motion compensation based on electronic image stabilization presents delays
between the high-speed image acquisition and the motion vector calculation, it conse-
quently hinders real-time motion compensation to obtain clear images. Figure 1 illus-
trates the timing of camera detection, motion estimation, and motion compensation.
As motion estimation takes time, only when frame n-1 is acquired, the motion estima-
tion of frame n-2 is completed. Then, when frame n is acquired, the compensation of
frame n-2 is completed.

Motion compensation is delayed by two time steps after image acquisition. Thus,
when frame n is acquired, we can use motion vectors before frame n-2 to predict the
motion vector of frame n. Finally, the predicted motion vector of frame n is transferred
to perform motion compensation without delay. Considering that estimation, predic-
tion, and compensation should be completed in one exposure period, a fast and robust
motion prediction method should be achieved.

In the process of camera detection, the movement state of the target may change at
any time. Although the complete target motion form is unpredictable, the target motion
in a short time can be predicted by models which also explains why dual resolution
camera system has a high frame-rate plane, in Section 4. Overall, the target in a short
time has two main states of steady moving and sudden shifting.

Considering the possible movement state of the target in a short period of time, we
propose a method for fast and robust target motion prediction.

3. Methods

3.1. Online LSSVM

Consider a training set {(x1, y1), (x2, y2), ..., (xn, yn)} with n training samples. The con-
ventional LSSVM uses nonlinear function φ to map the input samples onto a high-di-
mensional feature space. Then, the nonlinear estimation in the original low-dimensional
sample space is converted into linear estimation in the high-dimensional feature space:

 

Fig. 1. Timing of image detection, motion estimation, and motion compensation. 
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(1)

where w and b represent the mapping coefficients and bias, respectively, f (x) is the high
-dimensional feature space function. LSSVM introduces laxity variable ξ  = (ξ1, ..., ξn)
to convert this regression problem into a constrained minimization problem:

(2a)

(i = 1, 2, ..., n) (2b)

where J is the minimization cost function and γ is a penalty coefficient.
To solve the minimization problem above, Lagrange multipliers λ = (λ1, ..., λ2) are

used to express the problem as an unconstrained optimization problem. The Lagrange
equation is given by

(3)

whose equations can be obtained by applying the following Karush–Kuhn–Tucker con-
ditions:

(4a)

(4b)

(4c)

(4d)

The expressions in (4) can be represented in matrix form as follows:

(5)

where 1 denotes an n-element vector of ones, I denotes the identity matrix with n-di-
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To simplify (5), the kernel trick can be used to map the nonlinear primitive function
onto a new feature function. For any two input samples (xi , xj), the kernel trick is ex-
pressed as k(xi , xj ) = φ (xi) × φ (xj).

Considering (4), (5), and the kernel trick, the corresponding matrix expression is
given by

(6)

where λ and b are the LSSVM regression coefficients. Online LSSVM replaces all data
with data in sliding window to speed up model solving which is finally given by (7),
L is the sliding window length.

(7)

3.2. Proposed LSSVM

Our improved LSSVM is based on the model in (7). Thus, real-time training and predic-
tion can be achieved regardless of the size of the training set.

Regression coefficient λ is a vector with the same length of the training set and allo-
cates different weights to the samples, thus being a weight vector. Using (4), we obtain

(8)

The elements in the weight vector are proportional to the laxity factor, which re-
flects the deviation of the data from the fitted curve. Faster data changes imply higher
weights, whereas smoother changes imply that the maximum weight is closer to the
endpoint. We can explain the weight matrix considering gradients. Given two adjacent
data points {(x1, y1), (x2, y2)}, their gradient t is given by (9) and represents the rate of
data variation.

t = ( y2 – y1) /(x2 – x1) (9)

When data vary according to an internal law, the left gradient is close to the right
one. Meanwhile, one side of the endpoints has no derivative, and thus the endpoint data
have the highest weight. As the laxity factor is negative, the absolute value of the endpoint
weight is the highest.

When the data behavior changes suddenly, the left and right gradients are consid-
erably different. The largest value of the weight vector is assigned to the most variable
data point. However, the weighting of sudden changes is not sufficient because noise
and small fluctuations also affect data. Thus, we measure the data variation to identify
sudden changes by defining a gradient matrix.
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Let S be a data sequence, the length of the sliding window be N, and consider m
consecutive data points before time t to predict the data two time steps ahead. The fol-
lowing equations can be used to train pairs of data points (X, Y ):

X  = (St – m + 1, ..., St )
T (10a)

Y  = St + 2 (10b)

The final input training data point, (Xr, Yr), is given by:

(11a)

Yr = (Sm + 2, Sm + 3, ..., SN)T (11b)

Then, we use matrix Xr to construct gradient matrix G as follows:

(12)

Each column of G is obtained by subtracting two adjacent columns of matrix Xr.
Thus, every element of G can be treated as the gradient of the corresponding point.

Matrix G should be sensitive to sudden changes and robust during normal predic-
tion. Thus, we sum every column of G to obtain the following row vector:

Gr = (G1, G2, ..., GN – m –2) (13)

Each element of vector Gr denotes the gradient sum of m consecutive data points.
Then, we define Tr as follows:

Tr = min(Gr)/max(Gr) (14)

Tr being below a threshold T indicates that the state has suddenly changed, and the data
point with the maximum weight is considered as the changing point. Finally, we crop
the training data to discard the changing point and then reconstruct the training matrix
and perform the prediction.

4. Dual-resolution camera system

Since a single-resolution camera system has only one imaging plane, it is not only need
to use this image plane for motion estimation and prediction, but also to compensate the
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target movement in the same image plane in real time. When the target motion speed is
fast, two problems will be introduced: 1) The result of motion estimation will produce
a large error, which will affect the effect of real-time motion compensation. 2) Due to
the limitation of imaging time, motion estimation cannot obtain the exact target motion
state within one frame of imaging period.

Therefore, we design a dual resolution camera system with common light path
structure which means two image planes share one optical system. The whole system
applies motion estimation and motion prediction modules to an additional high fram-
erate image plane, and the original image plane only performs motion compensation.
The system schematic diagram is designed as shown in Fig. 2.

The whole system of images is presented as the form of fixed focus length 152 mm
and F-number of the camera lens is 2.6. The incident light passing through the lens is
split to two paths by a dichroic prism (split ratio is 3 to 7). One path is received by high
frame-rate image plane 1 and the other is received by high-resolution image plane 2.
The high frame-rate image plane 1 sends the calculated value to the high-precision two
-dimensional micro-platform. The high-precision two-dimensional micro-platform
moves the high-resolution image plane 2 to achieve the purpose of compensating the
target motion. In this case, the system can repeatedly compensate for a fast moving
target by high frame-rate image plane 1 and obtain clear motion compensation of the
target by high-resolution image plane 2. The final three views of dual-resolution cam-
era system are shown in Fig. 3.

Fig. 2. Schematic diagram of dual-resolution camera system.

 

 

 

 

 

 

a b c

Fig. 3. Three views of dual-resolution camera system. (a) Left view, (b) front view, and (c) top view. 
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5. Experiments

5.1. Evaluated parameters

We used the following parameters and configurations for experiments. For evaluating
motion prediction methods, we set N and m equal to 9 and 3, respectively, and used a
Gaussian kernel function with a variance of 0.6. In addition, we set threshold T equal 0.6.

For evaluating motion compensation effect of dual resolution camera system, the
frame-rate of high frame-rate and high resolution image plane are 100 and 12.5 fps,
respectively. Therefore, when we obtain a compensated high-resolution image, it has
actually been compensated eight times. Compared with the single compensation of
a single resolution camera system, the compensation accuracy can be greatly improved.

5.2. Evaluation on the videos obtained by dual-resolution camera system

We built an experimental environment to evaluate the motion prediction methods.
The whole devices include a dual-resolution camera system, a resolution board, a volt-
age generator, and a motion generator.

The voltage generator generated different modulation voltages to control the motion
generator to pull the resolution plate to generate sinusoidal motions with different am-
plitudes and frequencies.

The ground-truth of target motion was obtained by gray-scale projection [21] and
linear interpolation which was also the corresponding motion estimation method em-
bedded in dual-resolution camera system.

We first conducted experiments during stable operation. We continuously captured
multi-frame images to obtain the target motion. Figures 4a–4f  show the motion pre-

Fig. 4. Experimental results for stable operation. (a) Kalman filter, (b) ARIMA, (c) online LSSVM, (d)
BPNN, (e) LSTM, and (f ) our method.

a b
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diction results of the Kalman filter, ARIMA model, Online LSSVM, BPNN, LSTM
network, and the proposed LSSVM, respectively. The results of the ARIMA model
fluctuate widely, indicating its low robustness. The Kalman filter shows a small delay.
Our proposed method and LSTM network converge better than the other methods.

We then conducted experiments with the observational target under sudden shift-
ing. During image acquisition, we modified the voltage to apply an external change to
the target motion.

The prediction results of the evaluated methods are shown in Figs. 5a–5f. The Kalman
filter, BPNN and Online LSSVM provide a suitable prediction before the disturbance.

Fig. 4. Continued.

c d

e f
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The ARIMA model is still influenced by noise. However, when the disturbance is ap-
plied, the methods of Kalman filter, BPNN and Online LSSVM provide a poor pre-
diction effect and can only converge to the data after a long period.

Only the LSTM network (Fig. 5e) and proposed LSSVM (Fig. 5f ) are robust re-
gardless of the large disturbance, and both methods converge quickly afterward.

Table 1 lists the mean squared errors of the evaluated methods. The proposed method
achieves the highest performance, which is comparable to that of the LSTM network.

Fig. 5. Experimental results for sudden change. (a) Kalman filter, (b) ARIMA, (c) online LSSVM,
(d) BPNN, (e) LSTM, and (f ) our method.

a b

c d
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The average running time of our method is 0.0013 s. Only Kalman filter (0.0018 s)
and online LSSVM (0.0011 s) can compare with our method. The average running time
of ARIMA, BPNN and LSTM are 1.21, 0.32 and 2.11 s, respectively. Our method can
be well equipped with dual-resolution camera system.

5.3. Evaluation on dual-resolution camera system

We finally embedded the proposed algorithm in the dual-resolution camera system.
During imaging, the object distance is 4.5 m and the resolution board horizontally moved
in the field of view at different motion speeds (Corresponding to different image plane
motion speeds).

Since the maximum image plane motion speed that can be compensated by the
high-precision two-dimensional micro-platform is 0.522 mm/s, we evaluated final re-
sults by operating target at different image plane motion speeds which are 0.2, 0.35
0.5 mm/s, respectively. The stationary resolution board image can be distinguished to
scale 11.

e f

Fig. 5. Continued.

T a b l e 1. Mean squared error.

Mean square error Stable operation Sudden shifting

Kalman filter 4.09 16.72

ARIMA 5.05 83.95

Online LSSVM 1.77 16.35

BPNN 2.30 24.10

LSTM 1.67 13.87

Ours 1.63 13.42
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Figure 6 shows the comparison results of the motion-blurred image and the motion
-compensated image when image plane motion speed is 0.2 mm/s and increases to 0.35
and 0.5 mm/s. As speed increases, corresponding motion blur images (Fig. 6a) quality
becomes worse until it is difficult to distinguish any scale on the target. However, mo-
tion-compensated images (Fig. 6b) can be distinguished to scale 11, the same as the
stationary target image quality.

As shown in Table 2, we also calculated the MTF value of motion-blurred and mo-
tion-compensated images at 0.5 normalized Nyquist frequency to further confirm com-
pensation effect. The MTF value of stationary image equals 0.2.

The maximum image plane motion speed which our system can fully compensate
is 0.522 mm/s. When imaging a target at 4.5 km, the maximum relative motion speed
that the system can fully compensate is 55.62 km/h which is suitable for compensating
the motion of space and remote sensing targets

At last, we evaluate the limit image plane motion speed that can be compensated,
which is 0.65 mm/s. Converting to 4.5 km object distance, the maximum relative mo-
tion speed that the system can respond to and effectively compensate is 69.25 km/h.

a

b

Fig. 6. Comparison results of motion blur and motion compensation under different image plane motion
speeds. (a) Motion blur, and (b) motion compensation.

T a b l e 2. MTF value.

Image plane motion speed Motion-blurred Motion-compensated

0.2 mm/s 0.14 0.2

0.35 mm/s 0.08 0.2

0.5 mm/s 0.03 0.2
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6. Conclusions

The dual-resolution camera system can provide high resolution for the target we are
interested in, which can be well applied to space observation and other applications.
However, target motion will incur severe motion blur. Recent motion prediction meth-
ods can hardly be integrated with this system because of the limitation of precision
and speed. We therefore propose a fast and robust motion prediction method for dual-
resolution camera system to achieve excellent real-time motion compensation effect.
Regarding prediction accuracy, the proposed method outperforms the Kalman filter,
BPNN, online LSSVM, and ARIMA model while providing competitive results to the
LSTM network. Regarding prediction speed, the proposed method is at least two orders
of magnitude faster than the LSTM network. Experiments demonstrate the effective-
ness and robustness of the proposed LSSVM. Since the compensation capability of this
system is closely related to the high-precision two-dimensional micro-platform and
computing power of the embedded algorithm, we will consider further improving the
pulse frequency of the high-precision two-dimensional micro-platform and optimizing
the embedded algorithm.
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