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Taking the fractional Schrödinger equation as the theoretical model, the evolution behavior of the
Pearcey–Gaussian beam in the photorefractive medium is studied. The results show that breathing
solitons are generated when the nonlinear effect and the diffraction effect are balanced with each
other. Nonlinear coefficients, Lévy index and beams amplitude affect breathing period of the
soliton and maximum peak intensity. Within a certain range, the breathing period of the soliton de-
creases with the increase of the nonlinear coefficient and the Lévy index. However when the beams
amplitude increases, the breathing period and the maximum peak intensity of the soliton increase.
Under the photorefractive effect, due to the bidirectional self-acceleration property of the Pearcey
beam, the solitons formed will propagate vertically. These properties can be used to manipulate
the beam and have potential applications in optical switching, plasma channeling, particle manip-
ulation, etc.
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1. Introduction

In 2007, ANGUIANO-MORALES group proposed and experimentally obtained a diffrac-
tion-free caustic beam [1], and pointed out that the caustic beam has self-healing prop-
erties [2]. In 2015, VAVELIUK et al. divided the caustic beam into two types: folded
caustic beam and tip caustic beam according to the symmetry of the spectral phase [3].
The representative of folded caustic beam is Airy beam [4], which has the character-
istics of self-acceleration [5], non-diffraction [6] and self-healing [7–9]. So these prop-
erties have a wide application prospect in particle removal [10–12], biomedical
treatment [13], optical imaging [14,15] and so on. Pearcey beam, as a representative
of tip caustic beam, has been studied extensively by researchers. In 2012, researchers
experimentally obtained a new kind of beam, called the Pearcey beam, which based
on the Pearcey function [16], it was proved that the Pearcey beam exhibits similar prop-
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erties to Airy beam and Bessel beam, and it is proved that the Pearcey beam has self
-focusing and self-healing properties [17]. DENG et al. studied the virtual light source
problem of the Pearcey beam [18]. Later, KOVALEV et al. generated the half-Pearcey
beam and found that the Pearcey beam was formed by the interference of two half
-Pearcey beams [19]. In 2016, BOUFALAH et al. studied the influence of atmospheric
turbulence on the transmission of Pearcey beams [20]. At the same time, the study also
found that Pearcey beam is a beam of unchanging form, which is very similar to Gaussian
beam [21]. With the change of transmission distance, the light field distribution is also
changing, but it can always be expressed by the Pearcey function.

The fractional Schrödinger equation, as a linear partial differential equation, was
first proposed by LASKIN in 2000, and research at the time focused on the mathematical
issue [22–24]. Until 2015, LONGHI introduced the fractional Schrödinger equation into
the field of optics [25], which attracted widespread attention, and then based on the
fractional Schrödinger equation model, the transmission properties of Airy beams [26],
Gaussian beams [27] and super-Gaussian beams [28] were discussed, and the PT sym-
metric potential [29], linear potential [30] and other media had been widely studied.
Photorefractive medium [31–33] is a nonlinear medium that produces photoreceptive
refractive index changes. The input beam excites the carriers formed by impurities or
defects, generating a photosensitive electric field, which causes the refractive index of
the medium to change, and solitons are obtained by the balance between the diffraction
effect and the nonlinear effect. In recent years, solitons have drawn extensive research
by scholars; in 2009, the soliton solution of the NLSE was obtained in various forms of
non-Kerr law media [34]. Furthermore, the complex cubic-quintic Ginzburg–Landau
equation (CCQGLE) was also a common theoretical model. Analytic one-soliton solu-
tion for the variable coefficients CCQGLE was constructed by researchers [35]. Sub-
sequently, the research team obtained the bright, dark and singular soliton solutions
by theoretically solving the coupled Fokas–Lenells equation [36,37]. Additionally,
highly dispersive optical solitons were discussed by F-expansion scheme in 2018 [38].
These studies provide a theoretical basis for the stable transmission of optical fiber
communication.

Based on the fractional Schrödinger equation, the propagation properties of Pearcey
–Gaussian beams in photorefractive media are discussed by numerical simulation. By
changing beam parameters and medium parameters, including beam amplitude, distri-
bution factor, Lévy index, and nonlinear coefficient, the diffraction effect of the beam
is balanced by the nonlinear effect of the medium, which controls the formation and
the transmission of the solitons. Due to unique optical characteristics of the Pearcey
beam, it has broad application prospects in optical trapping and particle capture.

2. Theoretical model

Under the paraxial approximation, taking the fractional Schrödinger equation as the
theoretical model, the dynamic equation of beam propagation in the photorefractive
medium:
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(1)

where Φ(X, Z) is the dimensionless slowly varying envelope of the light beam; X = x/x0
and Z = z /  are the normalized transverse coordinate and propagation distance, re-
spectively; x0 is the transverses characteristic width;  is the Rayleigh length; k =
= k0ne = (2π/λ0)ne, λ0 is the free space wavelength, ne is the extraordinary refractive
index; α (1 ≤ α ≤ 2) is the Lévy index, when α = 2 it is the standard nonlinear Schrödinger
equation; β represents the nonlinear coefficient,  where γ33 is
the electro-optical coefficient and E0 is the external electric field.

The light field distribution of the initially incident Pearcey–Gaussian beam:

(2)

where A0 is the amplitude of the incident beam,  is
the Pearcey function, and χ0 is the distribution factor.

3. Numerical simulation

Using the split-step Fourier method, the Pearcey–Gaussian beam is used as the incident
beam to study its propagation characteristics in the photorefractive medium. 

Figure 1 shows the propagation evolution diagram of the Pearcey–Gaussian beam
in the photorefractive medium with different distribution factor χ0 and nonlinear co-
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Fig. 1. Propagation evolution diagram of the Pearcey–Gaussian beam in photorefractive medium with
different χ0 when A0 = 2, α = 1.5, and β = 0 (a1–c1), β = 1 (a2– c2), β = 3 (a3–c3), β = 5 (a4–c4),
β = 7 (a5–c5); (a1–a5) χ0 = 0.01, (b1–b5) χ0 = 0.1, and (c1–c5) χ0 = 0.9.
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efficient parameter β. In Fig. 1(a1), when β = 0, coherent diffraction occurs in the
Pearcey beam, resulting in fish-scale phenomenon. When the effect of nonlinear media
is not considered, due to the bidirectional self-acceleration property of the Pearcey
beam, as the propagation distance increases, the Pearcey beam will split and propagate
to both sides. In Fig. 1(a3), when β ≠ 0, as the increase of β, the nonlinear effect of the
medium and the diffraction of the beam reach a preliminary balance, and the main lobe
beam forms a soliton. With the growing of the nonlinear coefficient β, and the nonlinear
effect of the medium gradually increasing, the beam behaves as a bound state, and the
sidelobe beam is continuously reduced, and the energy starts to converge toward the
middle (see Fig. 1(a4–a5)). In Fig. 1(b3), when β = 3, the self-focusing effect of the
medium and the diffraction effect of the beam are further enhanced, and the solitons
formed are more stable during the transmission. In Fig. 1(b4) and (b5), as β increases,
the breathing period and amplitude of the breathing soliton become smaller, and the
energy of the sidelobe gradually transfers to the main beams, and the energy of the
sidelobe becomes smaller and smaller. In Fig. 1(a1), (b1), (c1), when β = 0, the distri-
bution factors χ0 are 0.01, 0.1, and 0.9, respectively, and with the increase of χ0, the
beam diffraction speed is faster and the energy decays rapidly. When the nonlinear co-
efficient is a certain value, the larger the χ0 is, the less the side lobes of the beam will
be, and the energy of the main lobe will be more concentrated. Thus, it is easy to form
a stable soliton (see Fig. 1(a3), (b3), (c3)). Therefore, only nonlinear coefficients β in
a certain range can form breathing solitons, too large or too small, and it will be difficult
to form stable solitons, while the light field distribution factor χ0 also has a certain in-
fluence on the formation of solitons.

Figure 2 describes the influence of different nonlinear coefficients β and Lévy in-
dex α on the transmission characteristics of the Pearcey–Gaussian beam. When the
Lévy index α and the nonlinear coefficient β are both small, there are soliton-like gen-
erations, as shown in Fig. 2(a1). In Fig. 2(a2–a4), with the increase of Lévy index α,
and the diffraction effect which is greater than the nonlinear effect, it is difficult to form
a spatial soliton. In Fig. 2(b1, b2), as the nonlinear coefficient rises, at this time, the
nonlinear effect and the diffraction effect of the beam are balanced with each other,
and breathing solitons are generated. With the increase of the Lévy index α, the dif-
fraction effect of the beam is gradually stronger than the nonlinear effect of the medium,
and the stability of the spatial soliton becomes worse (see Fig. 2(b3, b4)). In Fig. 2(c1, c2)
and (d1, d2), breathing solitons are generated during the transmission process and pres-
ent a stable breathing state with the growing of the β. In Fig. 2(c3, c4), three soliton
beams are formed. Due to the bidirectional self-acceleration behavior of the Pearcey
beam, the middle soliton always steadily propagates along the Z axis, while the two
solitons are separated from each other. As the Lévy index α increases, the breathing
period of the soliton becomes smaller. In Fig. 2(d3, d4), there are also three solitons
formed, and as α increases, the breathing amplitude of the soliton will also increase.
As β further increases, the nonlinear effect of the medium is stronger than the diffrac-
tion effect of the beam, the beam converges more obviously, and the breathing period
and amplitude of the soliton gradually become smaller (see Fig. 2(b3), (c3), (d3)).
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These characteristics can be used to control the beam transmission, which has potential
application value in optical switch, splitter and other fields. 

In order to further observe the characteristics of the breathing solitons during the
transmission of the beam, Fig. 3 shows the waveform diagram of the Pearcey–Gaussian
beam at different transmission distances when the nonlinear coefficient β is 3, 5, and 7,
respectively. Figures 3(a), (b), (c) correspond to Fig. 2(b4), (c4), (d4). From Fig. 3(a),
we can clearly see the complete breathing process of the spatial soliton. When β = 3,
the beam will form a stable breathing soliton during the transmission, and the lateral
width of the main lobe shows periodic changes as the transmission distance increases.
When β = 5 and β = 7, as shown in Fig. 5(b) and (c), there are symmetrical side lobes
on both sides of the main lobe. As the nonlinear coefficient β increases, the breathing
period of the spatial soliton becomes smaller, which is consistent with the phenomenon

Fig. 2. The evolution of the Pearcey–Gaussian beam in photorefractive media with different α when
A0 = 2, χ0 = 0.1, and β = 1 (a1–a4), β = 3 (b1–b4), β = 5 (c1–c4), β = 7 (d1–d4); (a1–d1) α = 1, (a2–d2)
α = 1.4, (a3–d3) α = 1.8, and (a4–d4) α = 2.
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Fig. 3. Transmission waveforms of Pearcey–Gaussian beams at different transmission distances when
A0 = 2, χ0 = 0.1, α = 2 and β are set at different values: (a) β = 3, (b) β = 5, and (c) β = 7.
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in Fig. 2(b4), (c4) and (d4). It can be concluded that within a certain range, the larger the
nonlinear coefficient β, the easier to form solitons, and the smaller the breathing period
of the spatial soliton. This is in full agreement with the conclusion obtained in Fig. 2.

Figure 4 shows the propagation evolution of Pearcey–Gaussian beams in photo-
refractive media with different photorefractive coefficient β and beam amplitude A0.
The greater the beam amplitude A0, the greater the initial incident power. In Fig. 4(a1–a4),
when β is small, due to the weaker nonlinear effect, the increases of the amplitude will
not generate soliton. In Fig. 4(b1–b4), when β = 3, due to the interaction between the
nonlinear effect of the medium and the diffraction effect of the beam, there is a soliton
shedding phenomenon. As A0 increases, the breathing period of the soliton also be-
comes larger, the sidelobe energy continues to increase, and the energy of the main
-lobe beam continues to decrease. In Fig. 4(b2), (c2), (d2), retaining A0 unchanged,

Fig. 4. The evolution of the Pearcey–Gaussian beam in photorefractive media with different A0 when
α = 1.2, χ0 = 0.1, and β = 1 (a1–a4), β = 3 (b1–b4), β = 6 (c1–c4), β = 9 (d1–d4); (a1–d1) A0 = 1, (a2–d2)
A0 = 3, (a3–d3) A0 = 5, and (a4–d4) A0 = 7. 
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with the increase of the nonlinear coefficient β, the formed breathing solitons are more
stable, and the breathing period of the soliton becomes smaller. In short, the beam am-
plitude A0 has a certain influence on the formation of breathing solitons, and within
a certain amplitude range, stable breathing solitons will be produced. In addition, the
threshold range of this amplitude to form solitons will change as the nonlinear coeffi-
cient changes. Therefore, adjusting the beam amplitude A0 and the nonlinear coeffi-
cient β can control the beam transmission.

In order to better show the evolution process of the soliton, Fig. 5 shows the rela-
tionship between the peak intensity of breathing soliton and the transmission distance
with different nonlinear coefficients β, Lévy index α, and amplitude A0. The periodic
oscillation curve shows the formation of a stable breathing soliton during the trans-
mission. In Fig. 5(a), as β increases, the transmission distance formed the soliton increas-
es, and the soliton breathing period decreases. In Fig. 5(b), the breathing period of  the
soliton will decrease with the increase of α, and the state of the soliton becomes more
stable. The maximum peak intensity of the breathing soliton will increase with the in-
crease of A0, and the transmission distance which formed the soliton also increases,

Fig. 5. Relationship between maximum peak intensity and propagation distance of shedding breathing
solitons in Pearcey–Gaussian beams: (a) χ0 = 0.1, A0 = 1, α = 1.5, the photorefractive coefficients β are
3, 5, and 7; (b) χ0 = 0.1, A0 = 2, β = 5 the Lévy index α are 1.4, 1.8, and 2; (c) χ0 = 0.1, β = 6, α = 1.8 the
amplitudes A0 are 1, 2, 3, and 4. 
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and the period of the breathing soliton becomes larger (see Fig. 5(c)). The analysis re-
sults are consistent with the previous conclusions.

Figure 6 shows the transmission evolution of the Pearcey–Gaussian beam in the photo-
refractive medium with different Lévy index and beam amplitudes. In Fig. 6(a1–a4),
when α is small, the beam state at this time is a bound state. When the Lévy index α
increases, the diffraction effect of the beam is enhanced, new side lobes are continu-
ously generated, and the breathing period of the space soliton is getting smaller and
smaller (see Fig. 6(b2), (c2), (d2)). In Fig. 6(b2–b4), as A0 increases, the nonlinear ef-
fect and the diffraction effect reach a balance, so the generation of breathing solitons
can be observed. In Fig. 6(c3), the balance effect is further enhanced, and the formed
breathing soliton is more stable. When the beam amplitude A0 further increases, it can
be found that the previous balance state begins to break. In this case, although there

Fig. 6. The evolution of the Pearcey–Gaussian beam in photorefractive media with different α when
β = 6, χ0 = 0.1, and A0 = 1 (a1–d1), A0 = 2 (a2–d2), A0 = 3 (a3–d3), A0 = 4 (a4–d4); (a1–a4) α = 1, (a2–d2)
α = 1.4, (a3–d3) α = 1.8, and (a4–d4) α = 2.
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are relatively stable breathing solitons, it can be clearly seen that the energy of the main
lobe and the side lobe is divergent (see Fig. 6(c4)). In Fig. 6(d1–d4), with the increase
of the amplitude A0, the transmission distance formed the soliton and the breathing
period of the soliton becomes larger, and the maximum lateral width of the soliton be-
comes larger. 

4. Conclusion

Taking the fractional Schrödinger equation as the theoretical model, the propagation
characteristics of the Pearcey–Gaussian beam in the photorefractive medium are nu-
merically simulated. It is found that spatial solitons will be formed during the trans-
mission, and the nonlinear coefficient β, the Lévy index α, the beam amplitude A0 and
the distribution factor χ0 will have an important impact on the generation and trans-
mission of spatial solitons. As the nonlinear coefficient β increases, spatial solitons will
be formed during the transmission. When the nonlinear coefficient β increases to a certain
value, the soliton will be more stable and can transmit stably along the Z-axis direction,
and the breathing period and breathing amplitude of the soliton will also become
smaller. The larger the is the distribution factor χ0, the closer the beam distribution is
to the Gaussian distribution, and the easier it is to form solitons. The amplitude A0 also
has a certain influence on the formation of breathing solitons. If the amplitude is too
large or too small, no solitons can be generated, stable breathing solitons are formed
only within a certain range. With the increase of the amplitude A0, the transmission
distance and breathing period of the soliton will also add. In addition, with the increase
of the Lévy index α , the beam diffraction effect is enhanced, the breathing period of
the soliton is reduced, and the breathing rate is accelerated. The conclusion shows that
the transmission of the Pearcey–Gaussian beam is controllable, which provides a po-
tential application value in optical signal processing.
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