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Propagation of arbitrarily polarized light through inhomogeneous media is modeled in this paper.
The model can include parameters of the media such as relative dielectric constant, relative mag-
netic constant and electric conductivity. The orientation of the electric field strength of the light
source could be defined arbitrarily, and in this paper two polarization modes are considered: trans-
verse electric (TE) mode and transverse magnetic (TM) mode. The electric field vector could
change its orientation in dependence on the characteristics of the media. The model developed in
this paper is based on the finite difference time domain (FDTD) method and Maxwell’s equations.
A two-dimensional formulation of FDTD is applied in this computing. Several cases were consid-
ered, and the results obtained in this paper agree with the literature. The model shown in this paper
does not require much time for computer processing and can be easily applied for specific cases
of media, source, and light.
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1. Introduction 

A great number of papers are devoted to the problem of the propagation of light through
arbitrary media [1-5]. The distribution of light intensity that passes through a slit or
obstacle was considered in [6-14], where Fraunhofer or Fresnel diffraction were con-
sidered. The aim of the referenced papers was to correlate the shape and dimensions
of slit/obstacle and diffraction pattern properties. These papers deal with regular
2D surfaces such as rectangle and circle as obstacles through light passes. There are
a few papers devoted to the diffraction of light on a 3D object [15-19]. The most com-
mon method for simulation of light propagation is Huygens–Fresnel (HF) principle.
Using this principle, diffraction patterns created from the diffraction of light on the
arbitrary surface, which bounds two media of arbitrary refractive index, can be recon-
structed. The diffraction pattern in the case of Fraunhofer diffraction is observed on the
distant screen. Similar method was presented in [20], for Fresnel diffraction on a plane
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screen, from a surface extended source. The model in [20] was based on FFT (fast
Fourier transform) and could be applied for Fresnel diffraction where the distance to
the screen is much larger than the surface dimensions. 

The models of light transport given in papers [6-19] have several assumptions, on
which they are built. 

The first assumption is that the incident wavefront is plane [6-14]. The electric field
vector is parallel to the considered surface between the two media and does not change
its orientation during light propagation. These changes in orientation were not consid-
ered even if point-like sources were considered, where the electric field vector cannot
lie in the plane of the 2D boundary surface. For large distances of the point source to
the obstacle or boundary surface, compared to the size of the obstacle, this could be
a reasonably good approximation. Propagation of light through 3D surfaces was treat-
ed in [15,16] where changing of orientation electric field vector was also not consid-
ered. The dependence of light intensity on the phase shift of propagated light was
calculated. Improvement of the HF model in [15,16] was done in [19], where a minimal
system that emits light is taken to be an electric dipole. Each surface segment was treat-
ed as an electric dipole. In this approach, according to appropriate laws, the electric
field changes orientation at the boundary. 

The second assumption of light transport is that considered media is homogenous
and refractive index is constant and does not depend on the coordinates [6-19]. The third
assumption is that the conductivity of transparent media is equal to zero and cannot
be considered in above referenced models. 

One of the successful methods for the propagation of light is the application of the
energy flow equation through the medium. Such a method is successfully used for in-
vestigation of the light propagation through optical fibers [20-22], elements of com-
munication, optical instruments, etc. However, for elements with inhomogeneous and
conductive media this method was not successful. 

In the present paper, the model for the light propagation through arbitrary surface
and inhomogeneous media was developed. This model is based on numerical solu-
tions of time-dependent Maxwell’s equations, using finite difference time domain
– FDTD methods [24]. This model enables the propagation of electromagnetic waves
at arbitrary frequencies (visible light, RF, UV, IR radiation) and arbitrary media.
The method was used to simulate the propagation of light through the arbitrary surface
between two media (plane, spherical, conical) and through inhomogeneous media,
where the refractive index is changing gradually. An additional advantage of this model
is that light can be propagated through conductive and more complex media, such as
biological cells and tissues.

2. Methodology 

2.1. Finite difference time domain (FDTD) method

FDTD method [24-27] for numerical simulation of propagation of electromagnetic
waves is based on Maxwell’s equations in differential form 
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(1)

(2)

Here, E is the vector of the electric field, H is the vector of the magnetic field, μ and
ε are magnetic and electric permittivity, respectively, while σ is electric conductivity
of media. The magnetic conductivity σm is taken to be zero in this paper, as the char-
acteristics of transparent material. Obstacles are inserted in the media and are presented
in two dimensions (2D). Obstacles can be, for example, a plane in the Cartesian coor-
dinate system, a circle, the cross-section of a cone and a plane. There are two polari-
zations that can be taken into account, regarding the orientation of the vector of the
electric or magnetic field. This corresponds to the TE wave (electric field vector normal
to xOy plane) and TM wave (magnetic field vector normal on xOy plane), as it is pre-
sented in Fig. 1. In both cases, the analysis is done using the sinusoidal incident wave.

σm H– μ
H
 t

-------------–  E=

σE ε
E
 t

------------+  H=

Fig. 1. Grid in the xOy plane and source for (a) TE mode with Ez component of electric field, and
(b) TM mode with Ex and Ey components of electric field. 

(a)

(b)
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2.1.1. TE mode

The TE mode sets up the electric field transverse to wave propagation, directed toward
the z-axis. In this mode three components of EM field are considered, one component
of electric and two components of magnetic field (Hx , Hy , Ez). Other components of
the EM field are equal to zero. The set of equations (1) and (2) in scalar form becomes 

(3)

(4)

(5)

The first and second equations give the derivation of the magnetic field over time, being
proportional to the derivation of the electric field over spatial coordinates. Conversely,
the third equation gives the derivation of the electric field over time, being proportional
to the derivation of the magnetic field over spatial coordinates. These equations can
be transformed in finite difference notation introducing a time and space grid. In dis-
cretized form Eqs. (3-5) take the form [24]

(6a)

(6b)

(6c)

where spatial steps are between successive points in x and y coordinates and Δ t  is the
time step. Indexes m and n correspond to spatial and q to time coordinates. In this paper,
we introduced a square grid, where Δy = Δx = Δ .
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2.1.2. TM mode

The TM mode sets up the magnetic field transverse to wave propagation, and is directed
towards the z-axis (Hz). The electric field has two components (Ex , Ey). For TM mode,
the sets of equations (1) and (2) in the scalar form are 

(7)

(8)

(9)

Applying the finite difference method, these equations can be written in the fol-
lowing form

(10a)

(10b)

(10c)

By discretizing the equations, coordinates x and y are translated to the discrete co-
ordinates m and n, respectively. In this way, the grid of the xOy plane is formed in the
Cartesian coordinate system (Fig. 1). For each point of the grid, defined by the points
with coordinates (m, n), the values of the medium characteristics are defined: electric
conductivity σ [m, n ], electric permittivity ε [m, n ] and magnetic permeability μ [m, n ].
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If these values are equal at each point, then the medium is homogeneous, otherwise it
is inhomogeneous. At the initial moment, q = 0 values of electric and magnetic field
strength are equal to zero at all points of the grid, except at the point of source. In the
next time step, the values of fields are calculated using the values of fields in the pre-
vious time step, for each point (m, n ) of the grid. In Fig. 1 the sample of sources with
TE and TM modes are shown. For TE mode, the vector of electric field strength Ez is
orthogonal to the xOy plane, while for TM mode electric field vector is tangential
to xOy plane and has two components: one orientated along the x-axis, Ex and another
orientated along the y-axis, Ey. 

2.2. Simulation of light propagation

To simulate light propagation through inhomogeneous media, software named Light-
Propagation was developed. 2D matrix was formed with dimensions of m × n number
of elements as presented in Fig. 1. Numbers m and n can be arbitrarily taken. In further
simulations m and n have been equal to 340. The spatial step Δ depends on the wave-
length and literature criteria is tenth part of the value of λ [22,23]. In this paper, the
wavelength is set to λ = 633 nm, defining Δ = 63.3 nm. To fulfill the stability of the
calculation, the time step must satisfy condition Δ t ≤ Δ / (2c0), where c0 is the light ve-
locity in a vacuum. Otherwise, solutions can diverge. In this work Δ t = 1.055 × 10–16 s.
The number of time steps in simulation is 1500 which corresponds to the total time of
light propagation as equal to 1500Δ t. The time of the one light oscillation is T = λ /c0
= 2.11 × 10–15 s. The number of time steps during the one period of oscillation is
S = T /Δ t = 20. 

For each node (m, n) of the grid, parameters σ [m, n ], ε [m, n ] and μ[m, n ] are set.
If two homogenous media are treated, which are divided with the surface F (x, y) =
= Fmn (m, n) = 0, then the grid elements have one value on the one side of the surface,
and the different on the other side of the boundary surface. In condensed form, the set
of Eqs. (6) and (10) could be written as 

(11a)

(11b)

(11c)
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(12a)

(12b)

(12c)

where C are matrix elements which depend on the media parameters. 
Subscripts of coefficients were introduced to describe the creation of the field.

The first index shows which field is being formed, the second index shows the com-
ponent of that field, and the third index presents the source of created field. For exam-
ple, subscript eyh means that the y component of the electric field is formed due to the
magnetic field.

The value of magnetic or electric field strength in the node (m, n) in time step q + 1
depends on values of the field in that and adjacent elements in the previous step time. 

When components of the electric and magnetic field in some moments of time are
determined, the intensity of the light wave can be calculated as a module of the mean
value of the Poynting vector

(13)

where  is the mean value of the Poynting vector over time for one period of oscil-
lation

(14)

3. Results and discussion 

The model presented in this work can be applied for simulation of light propagation
through an arbitrary surface. To apply the model, a plane coordinate system must be cho-
sen, with discretized coordinates m and n. The authors chose a grid with 340 × 340 nodes,
which is appropriate for the calculations presented below in the text. For each node of
the grid, the parameters of the media must be known. The electric field strength of the
source for TE mode is set as 

(15)
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and for TM mode

 and (16)

where ω = 2π /T  and E0 = 1 V/m is the electric field amplitude. The values of m and
n are chosen depending on the considered case, which will be explained further in
the text.

3.1. Light propagation in two media bounded by a plane surface

In this part the propagation of light in two homogenous media bounded with the plane
was considered. Equation of plane is set to be (it is fully arbitrary)

F(m, n) = n – (m – 170) tanα – 170 = 0 (17)

This plane surface goes through the center of the grid (mc = 170, nc = 170) and forms
angle α with the m-axis. If α = 0, this case corresponds to the plane which is parallel
to m-axis. If α > 0, then the plane has a slope with α in respect to m-axis (Fig. 2). 

The intensity of light propagation through two media bounded by a plane was
presented in Fig. 3. Parameters of media have following values σ [m, n ] =0 and
μ [m, n ] = μ0 for each m and n. Relative dielectric constant ε [m, n ] = 1 for n larger than
defined by Eq. (17), and ε [m, n ] = 2.25 for other. The intensity of light of TE mode
propagating from media with a larger optical density to media with a lower optical den-
sity was presented in Fig. 3(a). The angle of the plane slope with respect to m-axis is
α = π/4 rad. It could be seen that light directed from bottom has total reflection, as it
could be predicted by geometrical optics. The surface and angles of incident and re-
flected light were presented in the figure. The angle of the surface with respect to the
m-axis is π/4 rad, the angle of incident light and normal to the surface is π /4 rad as
well as the angle of reflected light.

Ex m n t   E0 ωt cos= Ey m n t   E0 ωt cos=

Fig. 2. Media grid with considered plane through which light propagates. 
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Figure 3(b) presents the light intensity of the light with a case where ε [m, n ] = 1
is constant for n smaller than defined by Eq. (17), and ε [m, n ] = 2.25 for other values
of n. The angle of the plane is α = π/3 rad. It could be clearly seen that there are trans-
mitted and reflected parts of the light. The angle of transmitted light in respect to
the normal of the surface is 0.19π rad and the angle between the surface and m-axis
is π /3 rad. The mode of light considered in this case is TE (s-polarization). 

Fresnel coefficients for reflected and transmitted light respectively are [27]

(18a)

Fig. 3. Propagation of  light through a plane. (a) Light intensity of  TE mode that propagates from the media
with larger to the lower optical density, where α = π/4 rad. (b) Light intensity of  TE mode that propagates
from the media with lower to the larger optical density, where α = π/3 rad. (c) Light intensity of  TM mode
that propagates from the media with lower to the larger optical density, where α = π/3 rad.

(a) (b)

(c)

Rs

ni θicos nt θtcos–

ni θicos nt θtcos+
-----------------------------------------------
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2

0.17= =
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(18b)

This result was obtained by the FDTD method where the intensity of transmitted light
is about two times larger than reflected as could be seen in Fig. 3(b).

In Fig. 3(c) intensity of light with TM mode ( p-polarization) was presented. Here
it was taken that the electric field of the source has a projection Ex[m, n, t ] = E0cos(ω t )
while Ey = 0. According to Fresnel formulas, the p-polarized, coefficients of reflected
and transmitted light are 

(19a)

(19b)

The reflected wave has weaker intensity, as obtained in this paper (see Fig. 3(c)).

3.2. Light propagation through the spherical surface

In this part, the light propagation was observed through the spherical surface, with a ra-
dius R = 50Δ. In discretized grid, the center of sphere is in coordinates (170, 170), and
its equation is

F (m, n) = (m – 170)2 + (n – 170)2 = 502 (20)

The relative electric constant of the medium outside of the sphere is εr1
 = 1 and in

the sphere is εr2
 = 2.25. It corresponds to the case of refractive index in sphere 1.5

and 1 outside sphere. The wavelength of light is λ = 633 nm. 
Figure 4(a) shows the strength of the electric field of the light wave after 1500Δ t

time. It can be seen in the picture that the refraction of the wavefront occurs at the
boundary surface of the two media. If it passes from an optically less dense to an op-
tically denser medium, the highest value of the electric field is at a point on the surface
and axis of the sphere. Constructive interference of the incident wavefront occurs at
that point. At that point the intensity of light has the highest value (Fig. 4(b)), and
it represents the focal point of that system (convex converging lens), which can also
be shown by the laws of geometric optics. Figure 4(c) shows the intensity through
the half-sphere as a plane-convex lens. The max intensity of light is at the point that
presents the focal point of the plane-convex lens. This point is not on the surface of
a sphere, as in Fig. 4(b). It is more distant because the radius of a flat surface of the
plane convex lens is infinite and the optical power is smaller. The results presented
here by the FDTD method are the same as predicted by laws of geometrical optics.
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3.3. Light propagation through the conical surface

Light propagation through the conical surface was presented in this part. The axis of
the cone is set parallel to the n-axis, in the middle of the grid. The top of the cone is
lined toward the point of the source, as in Fig. 5. Conical surface with radius R = 50Δ
and height H = 50Δ was presented in Fig. 5(a) and radius R = 50Δ and height H = 30Δ
was presented in Fig. 5(b). The center of the conical base is (170, 170). The relative elec-
tric constant of the medium outside of the cone is εr2

 = 2.25 and inside the cone is εr1
 = 1. 

For the first cone total reflection is satisfied and the interior of the cone is not
illuminated. Viewed from the top of the n-axis, the surface above the cone would be
a dark area. In the case of the second cone, part of the light wave penetrates the cone

Fig. 4. Propagation of light through a spherical surface as a convex lens. (a) Electric field strength of the
light that propagates through a spherical surface. (b) Intensity of the light that propagates through a spher-
ical surface. (c) Intensity of the light that propagates through a half-sphere as a plane-convex lens.

(a) (b)

(c)
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Fig. 5. The intensity of light wave propagating through the conical surface. (a) R = 50Δ and H = 50Δ, and
(b) R = 50Δ and H = 30Δ. 

(a) (b)

Fig. 6. The intensity of light wave propagating
through media. (a) Homogenous and (b) inhomoge-
neous media with linear decreasing refractive
index; (c) inhomogeneous media with linear in-
creasing refractive index.

(a) (b)

(c)



Finite difference time domain method of light propagation... 535
surface, and viewed from the top of the n-axis, a bright ring would be observed whose
characteristics depend on the dimension conical surface. 

3.4. Light propagation through inhomogeneous media

This part of the paper deals with the propagation of a light wave through an inhomo-
geneous media, shown in Fig. 6. The light source is linear, as in the previous cases,
but at an angle of π /4 with respect to the m-axis where n = –m + 110. Figure 6(a) shows
the propagation of light through a homogeneous medium. The direction of light prop-
agation has not changed. Figure 6(b) shows the propagation of light through an inho-
mogeneous medium, where the refractive index, i.e., the relative electric constant,
decreases linearly as

(21)

Due to propagation through an inhomogeneous media, the beam of light bends to-
ward media with a higher refractive index, as predicted by refraction law. 

Figure 6(c) shows the propagation of light through inhomogeneous media where
the relative electric constant linearly increases as

(22)

The bending of the light beam can be seen in Fig. 6. as predicted by refractive law. 
Figure 7 shows the distribution of the intensity of light propagating through the

sphere of radius R = 50Δ, with relative electric constant εr = 2.25. The conductivity and
magnetic constant are the same as outside of the sphere. In Fig. 7(a) intensity of visible
light was presented with wavelength λ = 500 nm, while Fig. 7(b) presents the intensity
of infrared light, with wavelength λ = 1266 nm. It could be seen that for shorter wave-
lengths the maximum of light intensity is more concentrated, while for the light of
a longer wavelength, the maximum has a lower value, and is more spread out. 

The influence of media conductivity on light propagation was also investigated in
this paper. The distribution of light intensity that propagates in a vacuum in which the
conductive sphere was located as presented in Fig. 8. The conductivity of the sphere
is σ = 6 × 107 S/m and the relative electric constant is εr = 2.25. The radius of the
sphere is R = 50Δ and the wavelength of light is λ = 500 nm. It can be seen from the
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figure that the light wave does not pass through the sphere, it is reflected from it and
scattered on it, which is another indication that this model is valid. 

4. Conclusion

In this work, the model for light propagation through arbitrary media was described.
The model is based on Maxwell’s equations in discrete form (FDTD method). In this
paper light propagation was considered for several cases and the intensity of light was
determined: two homogenous media bounded with plane, conical and spherical sur-
face, inhomogeneous media. The results presented here are the same as should be ob-
tained with laws of refraction and reflection of light.

Fig. 7. The intensity of  light wave through media is defined by a spherical surface with a radius R = 50Δ.
(a) Wavelength λ = 500 nm, visible light; (b) wavelength λ = 1266 nm, infrared light.

(a) (b)

Fig. 8. Distribution of  the intensity of  light scattered on a conductive sphere with radius R = 50Δ.
The conductivity of the sphere is σ = 6 × 107 S/m; the wavelength of light is λ = 500 nm.
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The advantage of the model presented in this paper is that it could be applied for
arbitrary inhomogeneous and conducting media. The light polarization can be arbitrar-
ily taken and defined in the source. In this paper s and p polarization were presented.
Changing of electric and magnetic field strength orientation during light propagation
was taken into account. Monochromatic light was considered in this paper, but the
model could be applied for other wavelengths. The model developed and presented in
this paper could also be applied to polychromatic light, by simulating the propagation
of light of different frequencies, i.e., wavelengths and total and summing them.

The set of equations presented here was applied for linear optics, where the param-
eters of media are constant over time. The model could be easily modified for nonlinear
optics, where the parameters of media depend on the time or they are a function of the
electric and magnetic field of the propagating light. This method could be useful in
spectroscopy, optical communications, optical fibers, and other fields.
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