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In recent years, optical neural networks have attracted widespread attention, due to their advantages
of high speed, high parallelism, high bandwidth, and low power consumption. Photonic unitary
neural network is a kind of neural networks that utilize the principles of unitary matrices and
photonics to perform computations. In this paper, we design a photonic unitary neural network
based on Mach–Zehnder interferometer arrays. The results show that the network has a good per-
formance on both triangular and circular binary classification datasets, where most of the data
points are correctly classified. The accuracies achieve 97% and 95% for triangular and circular da-
tasets, with the loss function values of 0.023 and 0.046, respectively.
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1. Introduction

The explosive growth of data in the information age, the innovation of algorithms, and
the improvement of computing power have promoted the rapid development of artifi-
cial intelligence (AI) technology. In recent years, AI technology has been widely used
in face recognition [1], speech recognition [2], natural language processing [3] and re-
lated other fields. The rise of smart cities, intelligent manufacturing, intelligent med-
ical care, intelligent education and other fields indicates that people are gradually
entering a more intelligent era. Neural network is an important computing model in
the field of AI, which greatly promotes the development of AI technology. Neural
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networks are a type of machine learning algorithm that are designed to mimic the way
the human brain works [4]. They consist of multiple layers of interconnected nodes
that can learn to recognize patterns in data, and can be trained to perform a wide range
of tasks, including image and speech recognition [2,5], natural language processing [3],
and decision-making [6]. The development of neural networks has been a key driver
of the advancement of AI technology, because they have enabled the creation of more
powerful and sophisticated machine learning systems.

The development of neural network models is inseparable from the computing power
support of chips. However, with the slowdown of the development of Moore’s law [7],
the development of electronic chips has also encountered serious bottlenecks [8], which
has been difficult to meet the demand for computing power of large-scale neural net-
works. Besides, most electric chips adopt the von Neumann architecture, which extracts
data from the memory to the processor during calculation, and then writes the data back
to the memory after processing. When the computing power of the chip reaches a cer-
tain level, the access speed of the memory is much smaller than the computing speed
of the processor, forming a bottleneck of the von Neumann architecture [9,10], which
could affect the performance of the chip seriously. Thus, new archtecures of computing
chips are urgently needed.

Among numerous new computing chip solutions, optical neural network (ONN)
chips have attracted widespread attention from the academic community, due to their
advantages of high speed, high parallelism, high bandwidth, and low power consump-
tion [11-13]. ONNs are an emerging class of computing architectures that use light
to perform complex computations. In recent years, there has been a growing interest
in developing ONNs for various machine learning tasks. One approach to implement-
ing ONNs is to use integrated photonics platforms, such as silicon photonics. These
platforms can be used to build compact and scalable ONNs that can perform complex
computations using light. Several recent studies have demonstrated the use of ONNs
for various machine learning tasks, such as image classification [14-16] and speech
recognition [17].

Photonic unitary neural networks are a class of neural networks that utilize the prin-
ciples of unitary matrices and photonics to perform computations. In photonic unitary
neural networks, the neural network weights are implemented as optical components
that operate on optical signals, resulting in fast and efficient computation [18]. 

In this paper, we design a photonic unitary neural network based on Mach–Zehnder
interferometer (MZI) arrays. The performance of the designed photonic unitary neural
network is evaluated through a binary classification problem.

2. Architecture

The photonic unitary neural networks are special neural networks whose weight matrix
is a unitary matrix. One of the key advantages of photonic unitary neural networks is
their ability to perform complex computations in parallel, with low power consumption
and high accuracy. This makes them well-suited for applications in fields such as image
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and signal processing, pattern recognition, and machine learning. Photonic unitary
neural networks represent a promising direction for the development of efficient and
high-performance computing systems, with potential applications in a wide range of
fields.

MZI is a type of optical device that utilizes the interference of light waves to per-
form various functions, such as filtering [19], modulation [20], and sensing [21]. It con-
sists of two arms with a common input and output port [22]. The light entering the input
port is split into two paths, which recombine at the output port. The relative phase dif-
ference between the two paths determines the interference pattern at the output port,
which can be used to extract information about the input signal.

In optical neural networks, MZIs are commonly used as basic building blocks for
performing matrix-vector multiplication [17]. By encoding the input signals as the
phase and amplitude of optical waves, and properly designing the optical path lengths
and coupling coefficients of the MZIs, the network can perform the necessary compu-
tations to achieve the desired neural network functionality [17]. 

One of the key advantages of using MZIs in optical neural networks is their inherent
parallelism [23,24]. Many MZIs can be operated simultaneously, allowing for the pro-
cessing of large amounts of data in parallel [23,24]. Additionally, MZIs can operate
at very high speeds [25], which makes them particularly useful for applications that
require real-time processing.

The basic computing unit of the photonic unitary neural network we designed is
MZI computing unit, as shown in Fig. 1. Each unit consists of two 50:50 beam splitters
and two tunable single-mode phase shifters, with phase shift value θ and φ, respec-
tively. 

The MZI computing unit can realize unitary operation as follows [18,26,27]: 

(1)

In this paper, based on the MZI unit, we design a photonic unitary neural network
using cascaded MZI arrays, as shown in Fig. 2. A single-layer photonic unitary neural
network is shown in the figure, where the unitary weight matrix and the input of the

Fig. 1. MZI computing unit. 
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neural network are multiplied and added, followed by a nonlinear function calculation. 
Figure 2 shows a designed 4×4 photonic unitary neural network, with six cascaded

MZIs and four phase shifters. The cascaded MZI arrays could implement unitary trans-
formation matrix U4, while the phase shifters could implement a diagonal matrix Σ.
Thus the structure could realize a 4×4 linear transformation matrix of 

(2)

3. Results

The photonic unitary neural network we designed is of simple structure, which uses
a few amount of MZI arrays and could be fabricated easily. Thus it can effectively re-
duce architecture power consumption and complexity. In order to evaluate the perfor-
mance of the photonic unitary neural network, we use it for a classification problem
of specific datasets. 

Two binary classification datasets are constructed for the training process, as shown
in Fig. 3. Figure 3(a) shows a linearly separable triangular binary dataset, consisting of
1000 data points distributed on both sides of  y = –x. Points with coordinates y < –x
are labeled as “0”, while points at coordinates y > –x are labeled as “1”. In order to
increase the complexity of the dataset, a small number of noise points are added. For
example, points whose coordinates match y < –x, but have a label of “1”. Figure 3(b)
is a linearly indivisible circular binary dataset with data points distributed on either
side of x2 + y2 = 0.5. Points with coordinates x2 + y2 < 0.5 are labeled as “0”, while
points at coordinates x2 + y2 > 0.5 are labeled as “1”. The circular binary dataset also
consists of 1000 data points and small amount of noise points. In Figure 3, data points
with label “0” are marked in red, while that with label “1” are marked in purple. By
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Fig. 2. Photonic unitary neural network. 
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using these two datasets, we can demonstrate the ability of the photonic unitary neural
network to handle both linear and non-linear classification problems. 

We constructed a three-layer fully connected neural network based on the chip-lev-
el photonic computing framework Neuroptica [28] to classify triangular and circular
binary datasets. Each layer of the photonic unitary network contains four neurons, as
shown in Fig. 2. The nonlinear function of the hidden layer is the electro-optic activa-
tion function, and the electro-optic activation function of the output layer is replaced
by the detection layer to simulate the optical power measurement of the photodetector.
The photonic unitary neural network is trained using the mean squared error (MSE)
loss function [29] and the adaptive moment estimation (Adam) [30] algorithm. Accuracy
is commonly used to evaluate ONNs, since it is a straightforward and easy-to-under-
stand metric, which measures the percentage of correctly classified samples out of the
total number of samples.

The training processes and the classification results of the designed photonic uni-
tary neural network on two binary classification datasets are shown in the following
two figures, respecitively, where Fig. 4 shows the results on the triangular binary dataset,
while Fig. 5 shows them on the circular binary dataset. As shown in Fig. 4(a), after
100 epochs, the accuracy of the triangular binary classification dataset reaches 97%,
with the loss function value of  0.023. Figure 4(b) shows the classification results on
the same triangular binary classification dataset, where the red and purple areas rep-
resent the classification results with label “0” and “1”, respectively, and the yellow line
stands for the decision boundary. From the picture we can see that most of the data
points are correctly classified.

While Fig. 5 shows the training processes and the classification results of the de-
signed photonic unitary neural network on the circular binary dataset, Fig. 5 (a) shows
the training processes with accuracy and loss function. As we can see from Fig. 5 (a),
after 100 epochs, the photonic unitary neural network achieves 95% accuracy, and the
loss function value is 0.046. Figures 5 (b) show the classification result. It can be seen

Fig. 3. (a) Triangular and (b) circular binary classification datasets. 
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from the figure that the correct classification results have been achieved for most of
the data points.

The significant advantages of ONNs compared to traditional architectures lie in their
high speed and low power consumption. The ONN system could run at 100 GHz rate,
which is two orders of magnitude faster than electronic system. The floating point op-
erations (FLOPs) per second of our ONN could achieve R = 9.6 × 1012 FLOPs. Mean-
while, the power consumption is primarily determined by the power required to
activate an optical nonlinearity and photodetectors. The typical energy consumption
of an ONN chip reaches femtojoule per FLOP [17], which is three to five orders of
magnitude [31] better than conventional computers. Overall, the excellent speed and
power advantages of ONNs make them promising candidates for accelerating artificial
intelligence and machine learning tasks.

Fig. 4. (a) Training process and (b) classification results of photonic unitary neural network on the trian-
gular dataset.

Fig. 5. (a) Training process and (b) classification results of photonic unitary neural network on the circular
dataset.
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4. Conclusion

In conclusion, we design a photonic unitary neural network based on MZI arrays.
The basic computing unit is composed of MZI computing unit, which can realize uni-
tary operation. In order to evaluate the performance of the photonic unitary neural net-
work, two binary classification datasets are used. Both triangular and circular datasets
consist of 1000 data points with a small number of noise points. Neuroptica computing
framework is used for the experiment, while MSE loss function and Adam algorithm
are adopted for the training process. The experimental results show that after 100 ep-
ochs, the proposed photonic unitary neural network achieves 97% and 95% accuracy
on triangular and circular datasets, respectively, with the loss function values of  0.023
and 0.046, respectively. Meanwhile, correct classification results have been achieved
for most of the data points, which indicate the good performance of the network.
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