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To improve the model training efficiency and the classification performance of the phase-sensitive
optical time-domain reflectometer (Φ-OTDR) in disturbance events recognition, a preprocessing
method based on Markov transition fields (MTF) and auto-encoder (AE) is proposed. The phase
time series, derived from demodulation of the original scattering signals, are converted into images
by using the MTF method. Subsequently, an auto-encoder is introduced to perform a dimensionality
reduction characterization of the MTF images, and the outputs of the encoder will be used as fea-
tures for classification. The experimental results demonstrate that, compared with directly pro-
cessing time series using 1-D CNN and classifying MTF images using CNN, the features obtained
by the proposed method can accelerate the training process and improve the recognition perfor-
mance of the classification model. The recognition accuracy for the four classes of events on the
fence reaches 95.6%, representing a 12% increase. 

Keywords: distributed optical fiber sensing, Φ-OTDR, disturbance recognition, Markov transition fields,
auto-encoder.

1. Introduction

As a typical distributed optical fiber sensing technology, the phase-sensitive optical
time-domain reflectometer (Φ-OTDR) is equipped with fundamental characteristics
such as anti-electromagnetic interference, corrosion resistance, and long sensing dis-
tance [1-4]. Moreover, Φ-OTDR stands out in vibration sensing for its advantages such
as accurate positioning capability, wide measuring range, and high sensitivity [5],
which is widely used in electric power pipeline safety monitoring [6], traffic track mon-
itoring [7], and security intrusion detection [8]. However, complex environments in
practical applications, where plenty of interferences including system operation noise,
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raining noise, and pedestrian footstep noise, lead to a high nuisance alarm rate (NAR)
for Φ-OTDR [9].

In order to reduce NAR and improve the performance of monitoring target threat
events, it is critical to investigate effective recognition methods for Φ-OTDR. In early
researches, most efforts were devoted to extracting features manually from time series
of signals, which were mainly phase temporal signals due to their linear correlation
with external vibrations [10]. In 2017, XU et al. proposed to select short-time energy
ratio, short-time level crossing rate (ST-LCR) and vibration duration as features, and
the recognition rate of the four events reached more than 90% by using support vector
machine (SVM) [11]. In 2019, WANG et al. extracted 14 features from vibration signals
as input vectors for a random forest (RF) classifier, with an average recognition rate
of 96.58% for four events [12]. To achieve effective classification results, these meth-
ods often require the artificial design of distinctive features tailored to specific event
types or the construction of extensive feature sets, resulting in a high computational
load and low feature utilization. In addition, it is difficult for researchers to discover
effective features of complex events in practical applications, and thus the recognition
results cannot meet expectations. 

The introduction of deep learning methods has solved this problem. Compared to
the manual feature extraction mentioned previously, end-to-end networks are better at
capturing the complex relationships within the data. In 2018, XU et al. fed spectrograms
of different vibration signals into a convolutional neural network (CNN) for feature
extraction and classification, and the recognition rate was over 90% [13]. In 2019,
WU et al. proved that one-dimensional (1-D) CNN outperforms CNN in both recogni-
tion accuracy and computational speed [14]. In 2023, LIU et al. proposed a deep learning
network based on the deep belief network (DBN) and the gated recurrent unit (GRU)
to effectively recognize five single events and four composite events with accuracies
of 96.72% and 90.94%, respectively [15]. However, many of these deep learning al-
gorithms are primarily derived from the speech and image processing fields, where the
complex network structures present challenges in terms of model training costs. 

Representation learning is a preprocessing method aimed at improving the char-
acterization of data, so that it can be better understood and utilized by models. In this
work, a preprocessing method based on Markov transition fields (MTF) and auto-en-
coder (AE) is proposed. The phase time series are converted into MTF images, which
contain richer structural information and facilitate better capture of signal features [16].
However, converting the Φ-OTDR signals into MTF images requires the utilization of
a more complex classification model, which may increase the computational cost. AE
is applied to map MTF images to low-dimensional representations, known as encoding
during the process, and outputs of the encoding are fed into the classification layer for
event recognition. By utilizing the encoding and decoding process of the AE, key fea-
tures can be extracted from the Φ-OTDR signals, and the computational cost of clas-
sification model can be reduced. In the experiment, the proposed method is employed
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to identify four typical threat events on the optical fiber, which is fixed to the security
fence. Compared with directly taking phase time series and MTF images as inputs to
the deep learning networks, a higher recognition accuracy of up to 95.6% can be achieved
with the proposed preprocessing method even if it is only in conjunction with a simply
structured classification model, which is an improvement of more than 12% over the
former two methods. At the same time, the training efficiency of the classification mod-
el is also significantly enhanced.

2. Principle

The processing flow of the proposed method is illustrated in Fig. 1, and the phase time
series at each space node on the fiber is demodulated from the Φ-OTDR detected sig-
nals by using the in-phase/quadrature (I/Q) demodulation method. The preprocessing
of the phase time series involves two main aspects, i.e., converting the series into MTF
images and encoding the images by AE. Unlike most methods that utilize phase time
series for classification, data denoising is not involved in the proposed method, as the
random noise present in the signal cannot alter the overall waveform trend and has no
significant impact on the MTF images. Subsequently, the encoded output will be fed
into the classification layer for training and testing to obtain the final event class.

2.1. Markov transition field (MTF)

MTF is associated with Markov chains, which are represented by the probability dis-
tribution of state-to-state transitions within a system, and such the probability distri-
bution is also known as Markov transition matrix [17]. A state transition diagram of
a three-state Markov chain is shown in Fig. 2, where circles represent states, and edges
with arrows represent transition probabilities between states.

Fig. 1. The processing flow of the proposed method based on MTF and AE.



220 XIN HU et al.
Then the Markov transition matrix corresponding to Fig. 2 can be expressed as,

(1)

where pij is the transition probability from state i to state j, 0 ≤ pij ≤ 1, and the sum of
transition probabilities pij in each row is equal to 1. When a Markov chain has N states,
the size of the transition matrix PNN  is N × N as follows,

(2)

Vibration signals typically exhibit non-stationarity and randomness, which can be
characterized by MTF. Given an obtained phase-time series X = {x1, x2, , xn}, the
series X is firstly discretized by setting Q bins, with each series value xi (1 ≤ i ≤ n) cor-
responding to a unique bin qj (1 ≤ j ≤ Q ). Then, the weight adjacency matrix W is con-
structed by calculating the transition probabilities among bins along the time axis [18],
expressed as,

(3)

where W is of size Q × Q, and wij is the probability that the next point of a point in
the bin qi is in qj . However, the insensitivity of W to temporal distribution leads to
excessive information loss, so W is extended to MTF defined as follows [19],

Fig. 2. The state transition diagram of a three-state Markov chain.
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(4)

where Mij denotes the transition probability from bin qi to bin qj, qi and qj denote the
corresponding bins of the series signals at time tamp i and j (namely xi and xj), respec-
tively. By taking the temporal ordering into account, MTF achieves multi-span tran-
sition probability encoding [20], and Mij can be viewed as pixels, allowing time series
to be converted into images.

2.2. Auto-encoder (AE)

AE is an unsupervised learning algorithm that can automatically extract important fea-
tures from unlabeled sample data [21], which includes two parts: the encoder and the
decoder. The former maps the input data to a lower-dimensional representation, while
the latter reconstructs the encoded result into the original input. In deep-structured net-
works, AEs are usually trained individually and then stacked together when training
is complete. A standard AE has a relatively simple structure, consisting of an input
layer, a hidden layer, and a reconstruction layer, as shown in Fig. 3. 
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Fig. 3. The structure of the AE.
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Given an unlabeled input sample s = [s1, s2, , sm]T, m is the number of nodes in
the input layer. The encoder, which is composed of an input layer and a hidden layer,
maps s to the hidden layer by a nonlinear transformation, and the obtained feature vec-
tor h = [h1, h2, , hp ]T can be expressed as,

h = f1(W1s + b1) (5)

where W1, b1, and f1(ꞏ) are the weight, bias, and activation function of the encoder,
respectively. Similarly, the decoder maps the feature vector h to the reconstruction lay-
er via a nonlinear transformation, and the reconstructed signal y = [y1, y2, , ym ]T out-
put by the decoder can be expressed as,

y = f2(W2s + b2) (6)

where W2, b2, and f2(ꞏ) are the weight, bias, and activation function of the decoder,
respectively. It is noteworthy that the input and reconstruction layers have the same
number of nodes. Leaky rectified linear unit (ReLU) is employed as the activation func-
tion in this work, which is an improved ReLU activation function and is commonly
used to address the issue of gradient vanishing and neuron death. The expression of
Leaky ReLU is,

(7)

The objective of AE training is to minimize the loss between the reconstructed sig-
nal y and the input signal s by optimizing the parameter set θ = {W1, b1, W2, b2} [22],
which is achieved by solving the following optimization problem,

(8)

After the AE has been trained, the better the potential features it learns, the greater
its ability to reconstruct the signal, which means that the reconstruction loss is lower.
The dimension of the hidden layer in AE is often much lower than that of the input
and reconstruction layers [23], which forces the model to learn the primary features
of the data while disregarding noise or unimportant details. Eventually, the encoder’s
output h will be fed as features into the classifier for vibration event recognition.

3. Experimental results and discussion

3.1. Experimental setup

A heterodyne coherent Ф-OTDR system is used for data acquisition in the experiment,
and its schematic diagram is shown in Fig. 4 (a). Continuous light with a central wave-
length of 1550 nm is emitted from a narrow-linewidth laser (NLL) and divided into
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two parts at a 90:10 coupler (OC1). 90% of the light is used as the probe light for trans-
mitting the sensing information and is modulated into optical pulses with 500 ns pulse
width by an acousto-optic modulator (AOM) with 80 MHz frequency shift, which is
driven by the pulse signal generated from the field programmable gate array (FPGA).
Then, after being amplified by an erbium-doped fiber amplifier (EDFA), the optical
pulses are launched into the sensing optical fiber via port 1 of the circulator. The back-
ward Rayleigh scattering light returned from the optical fiber is collected by the cir-
culator and is mixed with 10% light at a 50:50 coupler (OC2). The interference light
is received by a balanced photodetector (BPD) and converted into electrical signals.
Finally, the sampling is performed by a digital acquisition card (DAQ) with a sam-
pling rate of 250 MS/s, which is controlled by synchronization signals output from
the FPGA. A 14.8 km sensing optical fiber is connected to the Ф-OTDR system, and
a section of the optical fiber is fixed in an S-shaped on the security fence to facilitate
the application of disturbance, which is about 25 m long, as shown in Fig. 4(b).

3.2. Database preparation

According to the security fence scenarios constructed in the experiments, four note-
worthy events are chosen as recognition targets in the work, including climbing, knock-
ing, wind blowing and false disturbance. Tape was used to wrap the optical fiber on
the fence. Because of the limitations of the field, the fiber is only taped on the fence
at the test positions, where the experimenters would simulate various fence vibration
events. All the event data were collected when actual events occurred on the fence or
in its vicinity. The fence and optical fiber remain in the same arrangement and place-
ment in all events. The climbing event records the situation where people are climbing
the fence, resulting in compression of the optical fibers on the fence due to stepping
or pressing, accompanied by strong shaking. The knocking event is generated by peo-
ple striking the fence with tools such as plastic bottles or sticks. Compared to the climb-
ing event, the knocking event exerts less strain on the optical fibers and has a limited
impact range, shorter duration, and milder shaking. Wind-induced vibrations are also
selected as a monitoring target, as wind blowing is an important factor leading to fence
collapse. The wind blowing event was collected by placing the fence in an area with
strong wind. Additionally, some events that would not pose a security threat to the fence

Fig. 4. (a) The heterodyne coherent Φ-OTDR system. (b) The S-shaped optical fiber on the security fence.
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are considered false disturbance events, including system background noise, pedestri-
an passing noise, and rainfall noise. All these events are recognized as only single tar-
gets in this work, and the constructed event database is divided into training set and
testing set in a 7.5:2.5 ratio, with details shown in the Table.

3.3. Signal preprocessing and analysis 

After applying the I/Q demodulation method to demodulate the detected signal, the
obtained phase signals are used for preprocessing. The measurement time for each
phase signal sample is 1 s, which is longer than the periods of most vibrations. Due to
the fact that the sampled signals are discrete, it is actually the phase time series that

T a b l e. The database construction for vibration events.

Event type Training samples Test samples Total Label

False disturbance 150 50 200 0

Climbing 291 97 388 1

Knocking 298 100 398 2

Wind blowing 298 99 397 3

Total 1037 346 1383 –

Fig. 5. Phase series and MTF images of the three events. (a), (b) Climbing. (c), (d) Knocking. (e), (f ) Wind
blowing.
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are processed. Therefore, the length of each series corresponds to 1000 points, which
is determined by the pulse emission frequency of the Ф-OTDR system, and it is set to
1 kHz in this work.

The phase series curves and their corresponding MTF images of the three threat
events (climbing, knocking, and wind blowing) are shown in Fig. 5, where the reso-
lutions of the MTF images are 369×369 to better present the information contained in
the images. However, higher resolution will increase the time required for the conver-
sion of series into images and model training, which significantly affects the recogni-
tion real-time performance, so the resolution of the image is reduced to 32×32 in the
actual processing. It is obvious that the phase time series of different vibration types
can also be quite different when converted into MTF images. The MTF images present
large areas of similar color when the signal changes smoothly, while more segmented
areas appear when the signal changes more rapidly. 

Although converting series to MTF images can enrich the signal features, such di-
mensionality expansion will increase the complexity of the recognition model, result-
ing in model training speed reduction and performance degradation. Therefore, AE is
employed to extract latent features from MTF images, which are challenging to be
mined from the original sequence. The feature distributions obtained after encoding
the MTF images of different event types by AE are shown in Fig. 6(a). To demonstrate
the effectiveness of the MTF method being added, AE is also used to extract features
from the original phase time series, the distribution of which is depicted in Fig. 6(b).
Compared to the features extracted directly from the original phase time series by AE,
the features obtained from MTF images exhibit higher distinctiveness, displaying four
clearly defined clusters with well-defined boundaries in the figure. 

3.4. Recognition and results

To better validate the features that obtained by the proposed method can improve clas-
sification performance, a simple classification model is constructed for event recog-
nition, which is a neural network consisting of two fully connected layers. The number

Fig. 6. Feature distributions distribution of the encoder output in AE. (a) Using MTF images as input.
(b) Using the original phase series as input.
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of input neurons in the model is 32, corresponding to the output feature dimension of
the encoder in the AE. The number of output neurons is equal to the number of cate-
gories in the classification task, and it is 4 in this work. Softmax activation function
is used in the output layer, namely the second fully connected layer, to transform the
network’s output into probability distributions for each category. Briefly, the model
maps combinations of input features onto these categories to achieve classification. In
addition, 1-D CNN has been reported previously to exhibit superior performance in
Ф-OTDR recognition [14], so the original phase time series are fed into the simple clas-
sification model mentioned above and a 1-D CNN as a comparison here. All related
computational processing is implemented by Python, using a laptop with Nvidia GPU
(RTX 3050Ti). The training loss curves and testing confusion matrices of the classifi-
cation models are shown in Fig. 7 and Fig. 8, respectively. 

From the comparison of the training loss curves, it is obvious that the constructed
simple classification model, which is used in conjunction with the proposed method,
has the highest convergence speed. Whereas the training loss with the original phase

Fig. 7. Training loss curves.

Fig. 8. Testing confusion matrices. (a) The simple classifier with original phase time series. (b) 1-D CNN
with original phase time series. (c) The simple classifier with the proposed MTF-AE features.
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series can only converge to about 0.6, much higher than that of the other two methods,
indicating that the data is not well-understood and learned by the model. This expla-
nation can be further supported by the confusion matrices in Fig. 8. The classification
success rate for the three threat events is lower as shown in Fig. 8(b), while they are
better distinguished in Fig. 8(a). The proposed method also achieves the highest aver-
age recognition accuracy up to 95.6%.

MTF images are fed into a CNN for recognition to demonstrate the advantage of
adding AE for data dimensionality reduction in preprocessing. The time required for
the CNN trained to converge using all MTF images in the training set is about 81 s,
whereas that of the proposed method is only about 36 s, which includes the training
time of the AE. Besides, recognizing a sample using CNN and using the proposed meth-
od takes 1.12 and 0.62 ms, respectively, implying that the computational time added
by AE is much smaller than that reduced by model recognition. As can be seen in Fig. 9,
the proposed method not only raises the classification model efficiency, but also further
optimizes the classification results, leading to a 12% increase in recognition accuracy.

4. Conclusions

In this work, MTF and AE are introduced to preprocess the phase signal for Ф-OTDR
recognition. The phase time series without being denoised are converted into MTF im-
ages, and then the AE is applied to learn and extract latent features from these MTF
images. Finally, the downscaled features obtained by the encoder are sent to the clas-
sification model for the recognition of vibration event types. The experimental results
show that, compared to the 1-D CNN with original signals and the CNN with MTF
images, only a straightforward model with the features obtained by the proposed meth-
od can achieve a higher recognition accuracy of 95.6%. Moreover, the proposed meth-
od can improve the training speed of the model, which means that the model can be
trained in a shorter amount of time, and is beneficial for reducing the wastage of com-
putational resources and time in practical applications of Ф-OTDR.

Fig. 9. Comparison of recognition results, where Case Ⅰ: simple classifier with original phase series,
Case Ⅱ: 1-D CNN with original phase series, Case Ⅲ: CNN with MTF images, Case Ⅳ: simple classifier
with the proposed MTF-AE features.
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