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To solve the problem of false alarm rate in detecting infrared small targets under complex cloud
backgrounds, a novel algorithm combining structure tensor and local contrast is proposed. The struc-
ture tensor can better describe the gradient distributions in the local image area, and its eigenvalues
can also depict the characteristics of the area. Combining the weighted local contrast with eigen-
values, the small targets can be enhanced and the background can be suppressed. In addition, to
highlight the target, the regional complexity is further used for weighting local contrast. The pre-
sented algorithm steps are as follows: firstly, Gaussian filtering is performed on the original image;
secondly, the larger eigenvalue of the structure tensor matrix is used to calculate the local contrast
through the difference operation; thirdly, the regional complexity is calculated by the gray differ-
ence between the central and surrounding regions for weighting the local contrast to generate a sa-
liency map; finally, an adaptive threshold segmentation is performed on the saliency map to extract
the real target. The comparative experiments show that the proposed algorithm can achieve the
highest detection rate, lowest false alarm rate, and shortest running time.

Keywords: adaptive threshold segmentation, local contrast, regional complexity, small target, structure
tensor. 

1. Introduction

With the development of science and technology, the application of infrared detection
systems has been paid more and more attention [1]. Compared with other detection
technologies, infrared imaging detection technology has the advantages of long detec-
tion distance, high concealment, strong anti-interference ability, etc. [2]. Therefore, it
is widely used in military and civilian fields [3] such as precision guidance, early warn-
ing, and maritime search and rescue [4].
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Usually, the small target in the air is far away from the infrared imaging equipment,
resulting in fewer imaging pixels [5], and the imaging target has no specific structure
and texture information [6,7]. In addition, the small target is easily submerged in com-
plex backgrounds and strong noises [8]. Therefore, it remains a challenge to detect in-
frared small targets in long-distance air accurately [9,10].

Traditional methods such as wavelet transformation [11], morphological top-hat
filtering [12], and max-mean and max-median filtering [13] have good performance
in detecting small targets in simple air backgrounds [14]. However, those methods tend
to generate a large false alarm rate under complex air backgrounds [15].

In recent years, bionic methods based on human visual attention mechanisms have
attracted the attention of many researchers [16]. Human eyes not only depend on the
gray value of the target but rely more on the contrast between the target and its sur-
rounding backgrounds to recognize the target accurately [17,18]. Hence, the contrast
mechanism has been introduced by many researchers in the field of infrared small tar-
get detection [19,20].

According to the contrast mechanism based on human visuals, CHEN et al. [21]
proposed LCM, which detected the small target by calculating the maximum contrast
between the target and its surrounding areas at multiple scales. ZHANG et al. [22] pro-
posed ILCM, which calculated the local contrast with the difference operation to sup-
press continuous background. DU et al. [23] proposed HWLCM, which used the local
contrast and homogeneity features to detect the small target. HAN et al. [24] proposed
WSLCM, which is based on the weighted strengthened local contrast measure. That
is to say, by calculating the difference between each pixel region and its surrounding
area, the weak targets are highlighted and the background is suppressed.

However, the algorithms proposed by CHEN, ZHANG, and DU are sensitive to strong
background edges and easy to generate a high false alarm rate. Han’s algorithm can
effectively suppress strong background edges, but its detection time is too long. Com-
pared with the traditional algorithms, the detection performance of the algorithm based
on the contrast mechanism has improved to some extent [25]. However, there are still
problems that the background edge may be falsely detected as the target [26,27] and
the detection time is long [28] when detecting small targets under complex back-
grounds. There is still room for improving the detection performance of the existing
local contrast algorithm in complex backgrounds. 

Recently researchers have begun to incorporate new theories into local contrast al-
gorithms, such as high-boost-based multiscale local contrast measure [29], multiscale
local contrast measure using local energy factor [30], and the Gaussian scale-space en-
hanced local contrast measure [31]. However, these algorithms did not consider the
gradient difference between the target and background. As is well known, the gradient
distribution of small target is different from its neighboring background. Depicting the
gradient distribution of the local image area, the structural tensor is used to distinguish
the small targets from the background. Therefore, this paper proposes an infrared small
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target detection algorithm that combines structure tensor and local contrast. The pro-
posed algorithm can effectively improve the detection rate, reduce the false alarm rate,
and shorten the detection time.

2. Related works

In the field of image processing, the structure tensor is usually applied in corner de-
tection. It is defined as

(1)

where Dα is the Gaussian kernel function with variance α , Gβ represents the original
image G filtered by Gaussian filter with variance β, * is convolution operation,  is
the gradient,  is the outer product. Vx is horizontal gradient, Vx = ∂Gβ /∂x; Vy is
vertical gradient, Vy = ∂Gβ /∂y. J is the structure tensor, J11, J12, J21 and J22 are the
four elements of J. The two eigenvalues of J are denoted as λa and λb, which can be
obtained via

(2)

The features of the local image area can be reflected through the two eigenvalues:
for the corner region, λa ≥ λb >> 0; for the edge region, λa >> λb 0; for the flat region,
λa λb 0.

The gradients of a small target are large in all directions in the local image area,
which is similar to the corner point. So we consider applying a structure tensor to help
detect the small target. But, different from the corner point, the small target is approx-
imately circular and occupies a few pixels, which owns a small spatial range. There-
fore, we cannot directly use the original structure tensor to describe the gradient
features of the small target. Given the local saliency of the small target, the paper pro-
poses a new gradient calculation method that combines the idea of local contrast, which
will be discussed in the next section. 

3. Proposed method

The proposed algorithm mainly includes three parts: Gaussian filtering preprocessing,
saliency map generation and adaptive threshold segmentation. Figure 1 shows the
flowchart of the algorithm proposed in this paper. The small target is marked by the
red rectangle and the backgrounds and noises are marked by the blue ovals.
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3.1. Gaussian filtering preprocessing

The original infrared image is usually composed of the real target, pixel-sized noise
with high brightness (PNHB), background edges, and flat backgrounds. The PNHB in
the original infrared image is easy to be misdetected as targets. So, it is necessary to
suppress the PNHB before generating the saliency map. According to the theory of
matched filter [32], when the shape of the filter is similar to that of the small target, it
can keep the characteristics of the small target. Since the gray distribution of the tar-
get is consistent with the Gaussian distribution, Gaussian filtering is used to process
the original infrared image in this paper. Since the size of the target is smaller than
3×3 in this paper, the size of the Gaussian filter is defined as 3×3 and its template is
shown in Fig. 2.

3.2. Saliency map generation

3.2.1. Construction of structure tensor matrix 

The proposed algorithm combines the idea of local contrast to construct the structure
tensor matrix with the gray difference between the central cell and the surrounding
cells. Compared with the original structure tensor containing the horizontal, vertical,
and diagonal gradients in the local image area, the proposed tensor matrix can better
characterize the gradient distribution of the local image area.

To obtain the computational area of the structure tensor, a moving window is de-
signed to traverse the image. As the window moves, different image patches such as

Fig. 1. Flowchart of the proposed algorithm.

Fig. 2. 3×3 Gaussian filter template. 
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flat backgrounds, background edges, and the real target are captured, as shown in
Fig. 3(a). The size of the moving window is set to be 9×9, and it is divided into 9 cells.
The enlarged moving window is shown in Fig. 3(b). The central cell T is used to capture
the target, and the surrounding 8 cells B1–B8 are used to capture the background. 

For each cell, like WSLCM, the mean of the K maximal gray values is calculated.
m0 denotes the mean of the K maximal gray values of the central cell and m1–m8 re-
spectively denote the mean of the K maximal gray values of the corresponding sur-
rounding cells. They are calculated through (3) and (4), respectively.

(3)

i = 1, 2, ..., 8 (4)

where Tj represents the j-th maximal gray value of the cell T and  represents the
j-th maximal gray value of the i-th surrounding a cell. 

According to the definition of the Society of  Photo-Optical Instrumentation Engi-
neers (SPIE), the size of the small target is less than 9×9 [33]. The size of the small
target in the infrared image sequences used in this paper ranges from 2×2 to 3×3, so
the proposed algorithm is mainly applied to detect small targets in the range of 2×2
to 3×3. Referring to WSLCM, the value of K is set to be 4. Then, one image sequence
is selected for the experiment, and the result is shown in Fig. 4. It can be seen from
Fig. 4 that the proposed algorithm achieves the best detection effect when K is set to 4.
Meanwhile, the computational complexity of the algorithm is also minimal while K is 4.

For constructing the structure tensor matrix, the surrounding cells B1–B8 are di-
vided into four regions in four directions. The horizontal, vertical, and two diagonal
directions are defined as the XX, YY, XY, and YX directions, respectively. The specific
definition is given in Fig. 5. 

There are two surrounding cells in each direction where mi and m9 – i (i = 1, 2, 3, 4)
are used to make a difference with M0, respectively, the smaller difference value is de-

(a) (b)

Fig. 3. (a) Moving window captures different image patches. (b) Enlarged moving window.
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fined as the gradient value of horizontal, vertical, or diagonal directions. The M0 and
structure tensor matrix ST are defined as follows: 

i = 1, 2, ..., 8 (5)

(6)

(7)

(8)

(9)

(10)

Fig. 4. ROC curves of different parameters K.

Fig. 5. Direction definition.
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Where STXX , STYY , STXY , and STYX are the gradient values of the four directions, re-
spectively.

3.2.2. Calculation of local contrast 

The proposed algorithm utilizes the larger eigenvalue of the structure tensor to calcu-
late the local contrast instead of the commonly used ratio difference formula. The larger
eigenvalues obtained from different image areas are different in values. Therefore,
the eigenvalue decomposition operation is performed on ST, and the obtained two
eigenvalues are recorded as λ1 and λ2. Then, the calculation of local contrast is defined
in (12). 

(11)

(12)

where (x, y) is the current pixel coordinate, E (x, y) is the gain coefficient of the current
pixel, G (x, y) is the gray value of the current pixel in the original image, and LC(x, y)
is the local contrast of the current pixel. 

The larger the four elements of ST, the larger the obtained eigenvalues. On the con-
trary, the smaller the four elements of ST, the smaller the obtained eigenvalues. The ST,
λ1, and λ2 of different image areas are shown in Table 1. The red rectangle areas are
the calculation regions of ST. It can be seen from Table 1 that the larger eigenvalue of
the target area is much bigger than those of the background edge, flat background, and
PNHB. Therefore, compared with other background areas, the target is significantly
enhanced. As shown in Fig. 6, the target is much more prominent in the local contrast
map than in the noise image.

3.2.3. Calculation of weight and saliency 

To further highlight the target, the regional complexity of the local image area is in-
troduced to weight the local contrast. The regional complexity weight and saliency are
respectively defined as:

i = 1, 2, ..., 8 (13)

(14)

E x y  max λ1 λ2 =

LC x y  E x y  G x y  G x y –=

T a b l e 1. ST, λ1, and λ2 of different image areas. 

Different image
areas Target area Background edge Flat background PNHB

ST

λ1 149.12 2.05 0.19 1.51

λ2 –28.00 –46.20 –7.47 –14.84

70.20 98.98

78.29 50.92

19.96– 28.77–

20.07– 24.19–

3.76– 3.87–

3.78– 3.52–

4.55– 13.37–

4.66– 8.78–

WF x y  max min m0 mi–  0 ,=

S x y  LC x y  WF x y =
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Where WF(x, y) and S (x, y) are the regional complexity weight and saliency of the cur-
rent pixel respectively. 

For the target area, m0 > mi , the regional complexity weight of the target is large.
For the background edge area, m0 ≤ mi , its regional complexity weight is small. For
the flat background and PNHB, m0 and mi  are close, thus their regional complexity
weights are small. 

The target region is cropped for experiments to prove the effectiveness of the local
contrast and weighting calculation. The experimental results are shown in Fig. 6.

Where Fig. 6(a)–(d) are the 3D normalized value distribution maps of the cropped
original image, the noise image which is the original image adding PNHB, the local
contrast map, and the saliency map, respectively. Compared with the local contrast
map, the target is enhanced again while the background edges and PNHB are sup-
pressed again in the saliency map. Therefore, the regional complexity can further high-
light the target.

The central pixel of the moving window is replaced by the calculated saliency in
this paper. After the moving window traverses the image, the saliency map of the orig-
inal image can be obtained.

Fig. 6. (a)-(d) 3D normalized value distribution maps of the cropped original image, the noise image which
is the original image adding PNHB, the local contrast map, and the saliency map, respectively. 

(a) (b)

(c) (d)
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3.3. Threshold segmentation

In the saliency map, pixels with larger values are more likely to be the target. Adaptive
threshold segmentation is performed on the saliency map to extract the target. The
threshold is defined as 

(15)

where Max and Min are the maximum and minimum values of the saliency map re-
spectively, k is an adjustment parameter, generally ranging from 1 to 3. The pixels in
the saliency map that are greater than the threshold Th are considered as the target,
otherwise they are considered as the background.

4. Experimental results

To verify the background suppression performance and target detection performance
of the proposed algorithm, three real infrared image sequences with different cloud
backgrounds are selected for experiments. The feature descriptions of different se-
quence images are as follows. The characteristics of the first sequence of images are
low-speed weak aerial targets and altocumulus layers. The characteristics of the sec-
ond sequence of images are low-speed small aerial targets and stratocumulus layers.
The characteristics of the third sequence of images are high-speed small aerial targets
and altostratus layers. Table 2 presents the details of the three image sequences. To
prove the superiority of the proposed algorithm, it will be compared with several other
algorithms including LCM, ILCM, TLWLCM [34], HWLCM, SWLCM [35], and
WSLCM. 

All the experimental procedures in this paper run on a laptop with a 2.6 GHz Intel
Core i7-6700HQ processor and 8G memory, and the programming software is MATLAB
R2016a.

4.1. Background suppression performance

To verify the background suppression ability of the proposed algorithm, one frame im-
age is randomly selected from each sequence for testing. Figure 7 shows the three orig-

Th k Max Min+
k 1+

-----------------------------------------=

T a b l e 2. Detail of sequence images.

Sequence Resolution Frame Target description Background description

Seq.1 460×620 100 Dim, low contrast, 
slow-moving airplane 

Altocumulus, 
slowly changing clouds

Seq.2 460×620 90 Small, low contrast, 
slow-moving airplane

Stratocumulus, 
violently changing clouds

Seq.3 460×620 100 Small, higher contrast, 
fast-moving airplane

Altostratus, smooth clouds
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Fig. 7. (a1)–(a3) Original images in sequences 1–3. (b1)–(b3) to (h1)–(h3) Saliency maps obtained by
LCM, ILCM, TLWLCM, HWLCM, SWLCM, WSLCM, and the proposed algorithm, respectively.
The target areas are marked by red rectangles, and the enlarged target areas are in the lower right corner.
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inal infrared images and the corresponding saliency maps obtained by different
algorithms. In Fig. 7, the target areas are marked by red rectangles, and the enlarged
target areas are in the lower right corner. Figure 7(a1)–(a3) are the original images se-
lected from sequences 1 to 3 which respectively correspond to scenes 1 to 3.

LCM and ILCM have the worst performance, many continuous backgrounds are
left in their saliency maps. The performance of HWLCM is better than the above-men-
tioned two algorithms, but it also cannot completely remove the backgrounds. There
are still a lot of isolated backgrounds and a few background edges in the saliency map.
TLWLCM and WSLCM perform well in the latter two scenes, but a few isolated strong
backgrounds are left in their saliency map of the first scene. Although SWLCM and
the proposed algorithm perform well in the three scenes, the target is more obvious in
the saliency map obtained by the proposed algorithm in the first scene.

To compare the target enhancement and background suppression capabilities of dif-
ferent algorithms more quantitatively, signal-to-clutter ratio gain (SCRG) and back-
ground suppression factor (BSF) are introduced to evaluate the performance of these
algorithms [36] which are respectively defined as: 

(16)

(17)

(18)

Figure 8 shows the 3D normalized value distribution maps of the original infrared
images and the processed images obtained by different algorithms. In Fig. 8, the real
targets are marked by red rectangles. In the 3D maps obtained by LCM, ILCM,
TLWLCM, HWLCM, SWLCM, WSLCM and the proposed algorithm, the background
suppression ability of the former four algorithms is relatively weaker. WSLCM has
a good background suppression effect in the latter two scenes. But in the first scene,
WSLCM mistakenly suppresses the real target. Though SWLCM and the proposed al-
gorithm can accurately enhance the targets and suppress the backgrounds in three
scenes, the proposed algorithm can better highlight the target in the first scene. In short,
compared with other algorithms, the proposed algorithm can improve the saliency of
the targets in different scenes more effectively.

Where SCRin and SCRout are the signal-to-clutter ratios of the original and pro-
cessed images, respectively. It represents the maximum gray value of the target area.
μb and σb respectively represent the mean and standard variance of the background area
within a certain range around the target area. SCR is the signal-to-clutter ratio. σin and
σout represent the gray standard deviation of the background area of the image before
and after processing, respectively. The larger the SCRG, the better the target enhance-

SCRG
SCRout

SCRin

---------------------=

SCR
It μb–
σb

-----------------------=

BSF
σin

σout
------------=
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Fig. 8. (a1)–(a3) 3D normalized value distribution maps of original images in sequences 1–3. (b1)–(b3)
to (h1)–(h3) 3D normalized value distribution maps obtained by LCM, ILCM, TLWLCM, HWLCM,
SWLCM, WSLCM, and the proposed algorithm, respectively. The real targets are marked by red rec-
tangles.
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ment effect of the algorithm. The larger the BSF, the better the background suppression
ability of the algorithm. 

The SCRG and BSF of different algorithms are shown in Table 3 and Table 4.
The SCRG of the proposed algorithm is the largest in all three scenes. The BSF of the
proposed algorithm is larger than those of LCM, ILCM, TLWLCM, HWLCM and
SWLCM in all scenes. Compared with WSLCM, although the BSF of the proposed
algorithm is not the largest in some scenes, they are large enough to distinguish the
target from the background. As shown in Fig. 8(h2)–(h3), the value of the target is
much bigger than those of the backgrounds and noises.

4.2. Detection performance

To objectively evaluate the detection performance of different algorithms, the receiver
operating characteristic (ROC) curve is introduced in this paper [37]. The ROC curve
is drawn in a two-dimensional coordinate system where the horizontal and vertical axes
are described by the false alarm rate and the detection rate. The detection rate (TPR)
and false alarm rate (FPR) are respectively defined by (19) and (20).

(19)

(20)

The higher the detection rate and the lower the false alarm rate, the better the de-
tection performance of the algorithm. When the false alarm rate is constant, the higher
the detection rate, the better the performance of the algorithm. In the ROC curve, the
closer the curve is to the upper left region, the better the performance of the algorithm.

Figure 9 shows the ROC curves obtained by the proposed algorithm and the other
six algorithms where Fig. 9(a)–(c) are the ROC curves of sequences 1–3, respectively.
In sequence 3, the target has higher contrast while the background has simpler feature,

T a b l e 3. SCRG of different algorithms in different scenes.

Scenes LCM ILCM TLWLCM HWLCM SWLCM WSLCM Proposed

1 1.2288 4.1937 27.3449 2.7374 84.3067 557.5565 987.2341

2 1.0088 1.7875 47.7289 3.6389 130.6821 2197.8355 6529.4346

3 0.19819 0.35097 8.5606 4.8841 67.1514 424.947 595.7712

T a b l e 4. BSF of different algorithms in different scenes.

Scenes LCM ILCM TLWLCM HWLCM SWLCM WSLCM Proposed

1 0.97261 4.187 10.9222 3.2405 100.1795 51.9729 211.5409

2 1.4438 3.9637 30.2513 8.7662 195.2653 39106.851 865.7083

3 1.4762 2.936 17.9503 14.0249 286.0269 16586.44 762.6519

TPR Number of detected true targets
Total number of real targets

-------------------------------------------------------------------------------=

FPR Number of detected false targets
Total number of pixels in sequence images

----------------------------------------------------------------------------------------------------------=
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so all algorithms can achieve high detection rates. In sequences 1 and 2, although the
target has low contrast and the background is more complex, the proposed algorithm
can achieve higher detection rates compared with other algorithms. In general, the tar-
get detection performance of the proposed algorithm is better than that of other algo-
rithms in the three sequences. 

Applied to different resolution images and hardware processing platforms, differ-
ent algorithms have different runtimes. To better evaluate the real-time performance
of different algorithms, the calculation time of each pixel is used as the real-time eval-
uation indicator on the hardware platform used in this paper.

The t is defined as

(21)

The results are shown in Table 5. It can be seen from Table 5 that ILCM runs the
fastest among the former six algorithms, while the proposed algorithm is faster than

Fig. 9. (a)–(c) ROC curves of different algorithms in sequences 1–3.

(a)

(b) (c)

t Detection time of sequence images
Total number of pixels in sequence images

----------------------------------------------------------------------------------------------------------=
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ILCM. Therefore, the real-time detection performance of the proposed algorithm is
much higher than that of the other six algorithms.

5. Conclusion

It is well known that different regions of an image have different grayscale distributions
and structural features. In this paper, combining the structure tensor and region com-
plexity, a novel algorithm is proposed to improve the target enhancement and back-
ground suppression abilities. The proposed algorithm combines the idea of local
contrast to construct the structure tensor matrix, which can better describe the gradient
features in the local image area. Then the larger eigenvalue of the matrix is used to
weight the corresponding pixel value of the original image. This calculation method
can enhance the target more accurately and effectively. Finally, the regional complexity
is further introduced to weight the local contrast, which improves the saliency of the
target. Compared with other algorithms in SCRG, BSF, ROC curve and detection time
comprehensively, the proposed algorithm can achieve a better detection performance
for small targets in long-distance airspace. 

In our future work, we will focus on improving the operating efficiency of the al-
gorithm. Considering that the proposed algorithm needs to calculate the local contrast
of the whole image, we will try to screen out some suspicious areas from the original
image, and then calculate the local contrast in the suspicious areas.
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