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Miniaturized computational spectrometers have become a new research hotspot due to their port-
ability and miniaturization. However, there are several issues, like low precision and poor stability.
Because the problem of spectrum reconstruction accuracy is very evident, we suggested a novel
approach to raise the reconstruction accuracy. A library of optical filtering functions was acquired
using the time-domain finite-difference (FDTD) method. A cross-correlation algorithm was then
used to choose 100 sparse filter functions, which were then built as an encoding matrix and then, based
on the encoding matrix, a self-attention mechanism algorithm to improve the accuracy. The recon-
structed spectrum’s mean square error (MSE) is 0.0019, and its similarity coefficient (R2) is 0.9780.
This self-attention mechanism spectral reconstruction technique will open up new possibilities for
high-accuracy reconstruction for various computational spectrometer types.
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1. Introduction

The spectrometer is widely acknowledged as a vital tool in industry and scientific re-
search. Miniaturized spectrometers are critical for developing applications, including
consumer electronics, hyperspectral imaging, and in situ sensing [1]. Depending on
the intricacy of the necessary algorithms, there are two primary types of spectrometer
miniaturization techniques: traditional and computational [2-7]. A new paradigm in
spectrometer miniaturization, the computational micro spectrometer (CS), is based on
computational spectroscopy. It is anticipated to solve the limitations of conventional
microspectroscopy techniques, including their inability to achieve extreme miniatur-
ization, lack of stability, and limited resolution [8]. 

The CS relies on computational techniques to approximate or “reconstruct” an inci-
dent light spectrum from precalibrated information encoded within a set of detectors [9].
The process of reconstruction is crucial. Spectral reconstruction techniques have
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advanced significantly in recent years due to the growth of CS [10,11]. In current com-
putational reconstruction algorithms, Chang use the Gaussian kernel template denois-
ing method and parameter minimization method using the l1 paradigm for
reconstruction [12]. ZHANG presented a reconstruction approach based on dictionary
learning and sparse optimization. The experimental results imply that dictionary learning
can significantly increase the sparsity of general spectra, as l1-paradigm minimization
performs well for both direct sparse and general spectra that need to be translated into
dictionaries [13]. YANG constructed the most miniature microcomputing spectrometer
in the world at the time by combining recovered spectral data fitted with a Gaussian
basis function [14]. HUANG combined a sparse encoding method with a compressed
sensing algorithm to ensure the accuracy of spectral reconstruction, but the spectral
resolution was not high enough [15]. HUANG increased the spectral resolution by four
times by employing this property of the codec model of the spectral features fed into
the network to successfully reconstruct the spectrum information of 100 bands from
25 feature points [16].

Recent research has demonstrated that employing deep learning algorithms for
spectrum reconstruction of computational spectroscopy systems produces good re-
sults. However, because only the linear transformation of the ultimately linked layer
is used and the correlation between the spectra and the spectra itself is ignored, the
spectral reconstruction accuracy is not very great [17,18]. However, the study only
considered the linear transformation between spectral information and ignored the cor-
relation between spectra and spectra, which led to the accuracy of spectral reconstruc-
tion not being high enough. The self-attention mechanism algorithm in deep learning
can handle sequential data well, especially with global dependency. Transformer is
a neural network architecture based on an attention mechanism initially used for nat-
ural language processing tasks. Its main innovation is that it completely abandons the
sequential nature of the sequence and instead establishes dependencies between posi-
tions in the input sequence using the self-attention mechanism. At the heart of the
Transformer is the self-attention mechanism, which allows the model to treat all po-
sitions in the input sequence as objects of attention when computing each output. This
allows the model to simultaneously attend to all other positions in the input sequence
at each position, thus better capturing long-distance dependencies. It also allows the
network to assess the importance of different features autonomously, therefore determin-
ing the extent of other features and assigning greater weight to essential features in the
reconstruction process [19]. Thus, the properties based on the self-attention mechanism
can be used in spectral reconstruction to improve the reconstruction accuracy.

In this work, we first simulate a library of filter functions using FDTD and perform
initial screening. Then, we compute and design a coding matrix for the initial screened
library of filter functions using a mutual correlation algorithm. Secondly, the designed
coding matrix is used to construct a dataset for training and validating the model of the
spectral reconstruction algorithm. Finally, the self-attention mechanism is used to re-
construct the spectra, which successfully improves the spectral reconstruction accuracy
with a mean square error (MSE) of only 0.0019 and a coefficient of determination (R2)
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as high as 0.9780, which will be a solid step towards the practicalization of computa-
tional micro-spectrometers.

2. Method

2.1. Principles of computational spectroscopy 

The principle of a computational spectrometer is shown in Fig. 1. When aligned to
a measurement target, its incident spectrum first passes through a designed coding ma-
trix. It is then converted into an uncalibrated data. The incident spectrum conversion
equation is as follows:

(1)

where L (λ) denotes the incident spectrum; T (λ , X, Y ) is the designed coding matrix;
X, Y denotes the filter function at the corresponding position in the coding matrix, and
I (X, Y ) is the uncalibrated data converted by the filter function at the corresponding
position. 

2.2. Coding matrix design

In this section, the nanostructured cells are first simulated using the finite difference in
time domain (FDTD) method to obtain a filtering function library. The material of the
nanopillar is silicon (Si), and the substrate material is also Si. The height of the nano-
structures is set to 1 μm, and the period is set to 6 μm. The simulation wavelength range
is 8–12 μm, and one point is simulated at every interval of 0.02 μm, with 201 points.
By gradually increasing the FDTD nanostructures from 1 to 5 μm, 401 filter curves
were obtained as filter curves as a library of filter functions.

Then, the mathematical expectation is used to sieve the filter functions that are in-
sufficient to regulate the light in the FDTD method results to maximize the retention

L λ T λ X Y  d λ I X Y =

Fig. 1. Spectral conversion to undecoded process. (a) Spectral curves; (b) the constructed coding matrix;
(c) the converted uncalibrated data.
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of the filter functions that can respond to the light changes. The correlation between
each filter function and other filter functions is calculated using the mutual correlation
algorithm for the filter function library after the initial screening. Then, the new filter
function library is sorted according to the strength of the correlation. The specific sort-
ing method arranges the filter functions in Fig. 2(a) according to the strength of the
correlation from left to right and from top to bottom in Fig. 2(b). The correlation for-
mula is as follows:

(2)

Where X, Y respectively denote different curves; the value of Cov is the covariance of
X, Y curves; its calculation result ρ is a scalar and the range  when ρ > 0,
it means positive correlation, and the closer to 1 means the stronger correlation; ρ < 0,
it means negative correlation and the closer to –1 means the stronger correlation; when
the correlation coefficient is closer to 0, the correlation is weaker, and equals to 0 when
two variables are not correlation. 

2.3. Data set construction 

The spectral curves were first modeled using Gaussian basis functions to generate
a series of different spectral curves, with multiple peaked spectral curves generated by
superimposing multiple Gaussian functions or adding Gaussian noise. In the end, a to-
tal of 500,000 spectral curves were obtained. 

After the spectral curves were generated, they were converted to uncalibrated data
as input using the designed coding matrix, totaling 500,000 sets of datasets for spectral
reconstruction model training and validation. They were randomly divided into train-
ing and validation sets in the ratio of 8:2. In addition, 1,000 sets of actual data were

(a) (b)

Fig. 2. Filter function arrangement. (a) Filter function; (b) encoding matrix. 
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collected as an additional validation set to verify the performance of the algorithmic
model in a realistic environment.

2.4. Algorithmic modeling of self-attention mechanisms

This section proposes a method based on the self-attention mechanism network model
for spectral reconstruction to learn the mapping relationship from undecoded data to
spectral curves. The model of the spectral reconstruction algorithm based on the self
-attention mechanism is shown in Fig. 3.

The model consists of three main parts: a feature extraction part, a nonlinear map-
ping part, and a reconstruction part.

1. Feature extraction part. Let  denote the input data in the training set,
where (10, 10) is the format of this input data, and  corresponding to X de-
notes that the corresponding number of spectral bands is 201, and a dimensionality re-
duction process needs to be done on X before entering the model to convert X into the
format of  

2. Nonlinear mapping section. Nonlinear mapping aims to obtain information on the
spectral features of undecoded features. First, the undecoded-spectral features of dif-
ferent dimensions are extracted using Q and K, and a new matrix is obtained by doing
matrix operations on them to compute a weight for the features.

A normalization operation is then used to calculate the weights of Q and K between
0 and 1. Then, SoftMax converts a set of actual values into a probability distribution.

Finally, a matrix is computed using the data in dimension V with the data above,
and residual joins are added to facilitate convergence. In this model, the undecoded
data undergoes a self-attention block to get the spectral information features.

3. Reconstruction section. The reconstruction part of the spectrum focuses on re-
constructing 1×100 information into 1×201 spectral information. A fully connected
layer approach was used where each fully connected layer had incremental neurons
added to it to reach the last layer of  201 neurons and finally, the reconstructed spectrum
was successfully obtained.

2.5. Training and validation

The Adam optimization algorithm is used to optimize the weights of the parameters.
The learning rate is initially 0.001, and as the training proceeds, the network converges

Fig. 3. Model of spectral reconstruction algorithm based on self-attention mechanism.

X R10 10
Y R1 201

X R1 100 .
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using a learning rate decay strategy. Every 100 epochs, the learning rate will be half
the original, the batch size is 100, the maximal training period is 2,000 rounds, and
the loss function adopts the mean squared error (MSE). 

2.6. Spectral reconstruction performance indicators

Two related indicators were used as reconstruction indicators. The R2 similarity func-
tion is used to evaluate the following metrics:

(3)

Where yi is the reconstructed spectrum’s intensity value, Yi is the simulated spec-
trum’s intensity value, and  is the simulated spectrum’s average intensity value; as
well as MSE:

(4)

Where yi is the intensity value of the reconstructed spectrum and Yi is the intensity value
of the simulated spectrum.

3. Result

3.1. Coding matrix results

This section demonstrates the filter function library obtained from the screening. The
steps are shown in Fig. 4. Figure 4(a) shows the filter function library simulated by

R2 1
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(a) (b) (c)

Fig. 4. Different filter function libraries. (a) Filter function library consisting of 401 filter functions ob-
tained by the FDTD method; (b) filter function library consisting of 224 filter functions after an initial
screening with an expectation threshold of 0.15; (c) filter function library consisting of 100 filter functions
filtered by cross-correlation.
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FDTD, with a total of 401 filter functions, from which it can be seen that the filter func-
tion on the left side has a change in the optical response close to 0 and no apparent
fluctuations. Therefore, the expectation threshold is set to 0.15 to sieve out the function
filter with no change in the light response, thus obtaining the filter function library
shown in Fig. 4(b), with 224 filter functions and different responses to the spectral
changes. 

Finally, the cross-correlation algorithm is utilized further to filter the filter function
library after the initial filtering, and 100 filter functions are obtained, as shown in
Fig. 4(c). In Fig. 4(c), the variation of optical response grows stepwise with the wave-
band, making the function library more sparse than the library after the initial screen-
ing, which facilitates the expression of features in the subsequent spectral
reconstruction and thus improves the reconstruction accuracy.

3.2. Constructed datasets

In this section, 100,000 spectral curves were first simulated using Gaussian basis func-
tions. And since there are various Gaussian white noises in the real environment, the
noise was added to each simulated spectral curve by 5%, 10%, 15%, and 20%. Thus,
a total of 500,000 spectral curves were simulated, as shown in Fig. 5, which will be
used as the output of the algorithm model. Figure 5(a) shows the original spectral
curve, and Fig. 5(b)-(e) shows the spectral curves obtained by adding different
Gaussian noises on top of this curve. The figure shows that the larger the percentage
of noise, the more interfering information the curve has, and thus, the more interference
it produces in the subsequent reconstruction results.

Below is the uncalibrated data obtained from the spectral curves transformed by
the designed coding matrix, which will be used as inputs to the algorithmic model,
and its corresponding spectral curves will be used as outputs of the model for training.
The uncalibrated data in Fig. 6(a)-(e) correspond to the spectral curves in Fig. 5(a)-(e),
respectively.

3.3. Algorithmic reconstruction results for self-attention mechanisms 

To verify the magnitude of the improvement in spectral reconstruction accuracy of the
model used in this paper relative to other algorithms, the least square, compressed sens-
ing, deep neural network (DNN), and sequence-to-sequence (Seq2Seq) algorithms are
chosen as comparison algorithms. A comparison of the results of these four comparison
algorithms and the algorithms used in this paper is shown in the Table. As can be seen
from the Table, the reconstruction accuracy of the proposed method in this study is
significantly improved compared to the least squares and compression-aware algo-
rithms, with the R2 improved by 0.108 and 0.106. The MSE was reduced by 0.1181
and 0.0981, respectively, and compared to the fully connected network and the coding-
decoding network, the R2 improved by 0.068 and 0.038. The MSE reduced by 0.00681
and 0.00381, respectively.
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Fig. 5. Simulated spectral curves and spectral curves with different noises. (a) Original spectra; (b) adding
5% noise coefficient spectra; (c) adding 10% noise coefficient spectra; (d) adding 15% noise coefficient
spectra; (e) adding 20% noise coefficient spectra.

(a) (b) (c) (d) (e)

Fig. 6. Simulated uncalibrated data. (a) Uncalibrated data for the original spectra; (b) uncalibrated data
with 5% noise factor added; (c) uncalibrated data with 10% noise factor added; (d) uncalibrated data with
15% noise factor added; (e) uncalibrated data with 20% noise factor added.
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Noise needs to be analyzed since it can cause the results to deviate from the real
situation and make the reconstruction accuracy much less accurate. The reconstruction
results for different noises based on the model of the self-attention algorithm are shown
in Fig. 7(a)-(d), and Fig. 7 shows the results for noise parameters of 10% and 20%. It
can be seen that the algorithm achieves good denoising results. 

The results of the model used in this thesis for the reconstruction of the actual col-
lected spectra are shown in Fig. 8(a)-(f ), and the overall average result of its measure-
ment of  1000 data is R2 = 0.9027, MSE = 0.0085. The results show that using the
mutual correlation algorithm to filter the filtering function and the citation of the self-
attention mechanism network also has a yield. 

T a b l e. Comparison of reconstruction results of different algorithms.

Different algorithms R2 MSE

Least square 0.87 0.12

Compressed sensing 0.89 0.10

DNN 0.91 0.07

Seq2Seq 0.94 0.04

Self-attention 0.9780 0.0019

Fig. 7. Reconstruction results with 10% and 20% Gaussian noise added. (a)-(d) Reconstruction results for
different curve noises, respectively.
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4. Conclusions

In this paper, we design a set of spectral coding matrices based on the FDTD method,
expectation algorithm, and mutual correlation algorithm, which improves the precision
and accuracy of spectral reconstruction of the micro-spectrometer by introducing the
algorithm of self-attention mechanism in deep learning. Firstly, the filter function and
the mutual correlation function simulated by the FDTD method were used to construct
the coding matrix. Then, the dataset was constructed using this coding matrix and the
Gaussian function. Finally, the spectral reconstruction was carried out based on the self
-attention mechanism and compared with different algorithms. As a result, the method

Fig. 8. Actual spectral curve reconstruction results. (a)-(f ) Different actual spectral reconstruction results.

(a) (b)

(c) (d)

(e) (f)



Reconstructing computational spectra... 393
has dramatically improved the accuracy of spectral reconstruction with a coefficient
of determination R2 of 0.9780 and a root mean square error MSE of 0.0019, which
brings great significance to the improvement of the accuracy of spectral reconstruction
and makes an essential contribution to the practical application of computational mini-
spectrometers.
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