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The multispectral imaging system using the filter array can capture the multispectral information
of the scene in one snapshot and reconstruct the complete multispectral image by demosaicing.
However, the sparse sampling rate makes image captured by demosaicing a challenging problem.
Although a lot of demosaicing algorithms have been developed, the existing well-performing meth-
ods have limitations in modeling non-local dependencies which lead to artifacts. To solve this prob-
lem, this paper proposes a transformer-based multispectral image demosaicing model to address
the problem. The proposed model comprises a pseudo-panchromatic image generation network and
a transformer-based multispectral image reconstruction network. Additionally, we designed a fu-
sion module to combine the pseudo-panchromatic image with the raw mosaic image captured by
the camera, leveraging the correlation between the band of multispectral images to improve the
performance of the model. The experimental results show that the proposed method has the ad-
vantages of high reconstruction precision, strong anti-noise interference ability, and small calcu-
lation amount, which provides a better image reconstruction solution for constructing a high-
quality multispectral imaging system applied to multiple scenes.
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1. Introduction

The multispectral image (MSI) contains the scene’s two-dimensional space and the
one-dimensional spectral information that can reflect the physical and chemical char-
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acteristics of the target, which can better help people analyze the objects in the scene.
Thus, MSI has been increasingly used in medical imaging [1], object detection [2], food
safety [3], surveying and mapping [4,5] and other fields. How to efficiently acquire
MSI has attracted wide attention. The traditional multispectral imaging method [6] is
based on scanning, such as scanning the spectrum along the spatial dimension, which
produces high hardware costs and is more time-consuming, making it difficult to ex-
ploit in complex dynamic scenes. With the widespread application of micro- and
nanotechnology in fields such as terahertz [6], mid-infrared emitters [7,8], and color
sensors [9], multispectral filter arrays (MSFA) featuring micro- and nanostructures
have garnered significant attention from researchers. Snapshot multispectral cameras
based on MSFA offer advantages such as instantaneous data acquisition, small hard-
ware size, and low cost. The MSFA is the core component of the camera. The MSFA
is a set of spectral filters integrated into a sensor. The image taken by the MSFA camera
is called the raw mosaic image. Each pixel on the raw mosaic image only records a single
band of sense, and the information on other bands is lost. Consequently, the missed
information must be estimated from the acquired sparse spatial data. This process is
called MSFA demosaicing. The MSFA demosaicing is challenging. As the number of
spectral bands in the array increases, the spatial sampling rate is further reduced, the
information loss in the MSI will increase and the reliability of the image will be re-
duced.

Many demosaicing algorithms have been developed. The researchers first considered
using interpolation to solve the problem. BRAUERS et al. [10] proposed the weighted
bilinear (WB) interpolation method. GUPTA et al. [11] proposed a universal multispec-
tral image demosaicing method based on the residual method (RD). MIHOUBI et al. [12]
applied a pseudo-panchromatic image (PPI) to the residual method for multispectral
image reconstruction. The reconstruction effect is better than that of RD. Interpolation
algorithms for demosaicing mainly use spectral correlation and spatial correlation.
The further reduction of the sparse sampling rate will seriously weaken the spatial cor-
relation and spectral correlation of images, making it difficult for interpolation algo-
rithms to achieve better reconstruction results. Some researchers also use matrix
solutions to solve this problem. BIAN et al. [13] report a generalized demosaicing meth-
od with structural and adaptive nonlocal optimization, enabling boosted reconstruction
accuracy for different MSFAs. In recent years, deep learning has demonstrated excep-
tional capability in many areas of imaging, such as, object detection [14], image noise
reduction [15], and image fusion [16]. Researchers [17-19] have applied deep learning
methods to MSFA demosaicing. SHOPOVSKA et al. [20] uses U-net networks to leverage
the cross-band dependencies to recover details in textured regions, realizing recon-
structing RGB and near-infrared spectra. LIU et al. [21] proposes a novel end-to-end
deep learning framework based on pseudo-panchromatic images, which consists of two
networks, the deep PPI generation network (DPG-Net) and the deep demosaicing net-
work (DDM-Net). FENG et al. [22] considered the position-coding of the filter array
and proposed the MCAN network. The analysis of the aforementioned literature yields
the following conclusions: 1) The introduction of PPI can effectively improve the qual-
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ity of multispectral image reconstruction. 2) Deep learning algorithms based on con-
volutional neural networks (CNN) have greatly improved the quality of reconstruction.
However, it is difficult for convolutional neural networks to capture long-range cor-
relation and spectral similarities, leading to artifacts and other problems. 

The transformer [23] is a model architecture that has garnered considerable atten-
tion, initially attaining remarkable success in natural language processing (NLP) and
subsequently being adapted for visual tasks. The core concept of the transformer lies
in its self-attention mechanism, which can capture dependencies between any two po-
sitions in the input data, regardless of their distance in the sequence. In the context of
visual tasks, the most notable application is the vision transformer [24] (ViT), which
divides an image into a series of small patches and flattens these patches into a se-
quence, similar to how word sequences are processed in NLP. This sequence of image
patches is then fed into a standard transformer network. Through this process, the trans-
former learns global dependencies between patches, allowing it to capture comprehen-
sive features across the entire image. Unlike traditional convolutional neural networks
(CNNs), which rely on convolution operations to extract features, transformers utilize
a global attention mechanism, offering advantages in handling long-range dependen-
cies and complex structures. While transformers typically require more computational
resources and larger datasets for training compared to CNNs, they have demonstrated
strong performance across various computer vision tasks, such as image classification,
object detection, and image generation, particularly on large-scale datasets.

Based on the above literature analysis, we introduce an efficient MSFA demosaicing
network utilizing the transformer architecture. The algorithm comprises two main net-
works: the PPI generation network and the multispectral image reconstruction net-
work. Initially, we employ the PPI generation network, leveraging the self-attention
mechanism to achieve efficiency. Subsequently, the generated PPI and the raw mosaic
are simultaneously sent to the multispectral image reconstruction network to recon-
struct the MSI. Finally, we linearly combine the loss functions of PPI and MSI as the
loss function of the entire network. Besides, we propose a new module, an enhanced
version of the transformer model. This is designed to better reconstruction. This mod-
ule incorporates sophisticated mechanisms to effectively utilize the intricate details
provided by PPI data, thereby improving the accuracy and quality of reconstruction.
Through a series of experiments, we prove the superiority of the proposed method and
its applicability to real scenarios and test the stability of the model. The proposed meth-
od can be used to compose multispectral imaging systems with higher performance. 

2. System model and preliminaries

2.1. MSFA camera model

The MSFA camera is an imaging device that captures information of multiple spectral
bands. The MSFA camera covers the CCD with a set of tiny spectral filters, each allowing
only a specific wavelength of light to pass through. These filters are arranged on the
sensor in a specific array so that each pixel only receives spectral information in a cer-
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tain band. The system includes a CCD sensor, MSFA, lens system, image processing
unit, and other modules. As shown in Fig.1, the imaging process begins with light from
the scene entering the camera through a lens system, carrying spectral information
across different wavelengths. Upon entering the camera, the light passes through MSFA.
The filtered light then reaches the CCD sensor. These signals are subsequently con-
verted into digital data by the CCD sensor, producing a two-dimensional image array
with spectral information across different bands. As each pixel in the MSFA image con-
tains information from only one wavelength, demosaicing algorithms, such as inter-
polation, are typically employed to recover lost wavelength information.

Assuming ideal optics and homogeneous spectral sensitivity of the sensors, the val-
ue of the raw mosaic image at the pixel (x, y) is expressed as 

(1)

where is the spectral wavelength range of MSI. λ is the spectral wavelength. The term
is the relative spectral power distribution of the light source. R(λ, x, y) represents the
reflectivity of an object in space position (x, y) to light. T (λ, x, y) represents the filter
function of the multispectral filter array at the spatial position (x, y). 

2.2. Pseudo-panchromatic image 

The ground-truth (GT) PPI refers to the mean image over all bands of MSI:

(2)

where C represents the number of bands in MSI, and I c denotes spectral image of the
c-th channel. MIHOUBI et al. [12] demonstrates that when the central wavelengths of
two frequency bands are significantly separated, they correlate more with the PPI than
between each other. For instance, the correlation between a spectral image centered at
455 nm and another centered at 755 nm is lower than the correlation between the
455 nm spectral image and the PPI. LIU et al. [21] discussed the relationship between
PPI and MSI in detail and concluded that there is a strong correlation between PPI and

Fig. 1. Multispectral image acquisition process of MSFA-based camera.
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multispectral images. Therefore, it is of great significance to efficiently utilize the
strong correlation between PPI and MSI to guide the reconstruction of MSI.

3. Methodology

This section introduces our proposed deep-learning algorithm. The comprehensive net-
work architecture of the algorithms is initially presented, followed by a detailed de-
scription of the operation of each module.

3.1. Network framework

An overview of the proposed architecture is depicted in Fig. 2. It is a two-stage of net-
work containing a PPI generation network (PPIGN) and a multispectral image recon-
struction network (MIRN). We first apply a PPI generation network to generate PPI from
the raw mosaic image.

(3)

where HPPIGN(ꞏ) represents the operations of the PPI generation network.
Then, the obtained I PPI and the raw mosaic image I MSFA are sent to a multispectral

image reconstruction network to recover MSI.

(4)

where HMIRN(ꞏ) stands for the operations of a multispectral image reconstruction net-
work. I recon stands for reconstructed multispectral image. 

3.2. PPI generation network 

The primary objective of the proposed PPIGN is to generate a PPI that closely approx-
imates the real PPI. Figure 3(a) illustrates how PPIGN generates PPI from raw mosaic
images. PPIGN consists of two branches: a smooth filtering branch and a high-frequency
detail recovery branch. Initially, we use a smoothing filter to generate a preliminary PPI.
However, there remains a significant disparity between this preliminary PPI and the
actual PPI. Therefore, we introduce a network to enhance the PPI by recovering high

I PPI HPPIGN I MSFA =

I recon HMIRN I PPI I MSFA =

Fig. 2. The comprehensive architecture of the multispectral image reconstruction network is presented.
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-frequency information. After the high-frequency information is recovered, it is added
back to the preliminary PPI to produce the final sharpened PPI. 

Specifically, the high-frequency detail recovery branch comprises two attention-con-
volution blocks (ACB) and a multi-scale attention-convolution block (MACB). An ACB
is used for shallow feature extraction. Then, a MACB is employed for the feature trans-
formation of these extracted shallow features. Finally, an ACB is utilized to aggregate
the feature information to obtain the output feature.

The structure of ACB and MACB is shown in Fig. 3(b) and (c), which are based
on the transformer module. ACB consists of three 5×5 convolution kernels and one
activation function. First, three 5×5 convolution kernels extract features from the input
data respectively to obtain three different features. Then, two of the features are
multiplied, and the activation function is applied nonlinearly to generate attention
features. These attention features are then multiplied with the remaining feature to get
the final output. MACB is a further improvement of ACB, mainly by transforming the
two 5×5 convolution kernels for extracting attention features into 7×7 convolution
kernels and 9×9 convolution kernels. 

3.3. Multispectral image reconstruction network

The proposed MIRN is the cornerstone of our architecture, adopting a U-Net-like
overall structure, as illustrated in Fig. 4(a). MIRN consists of an encoder, a bottleneck,
a decoder, and three convolution layers, and employs up-sampling and down-sampling

Fig. 3. The PPI generation network. (a) Overall structure of PPI generation network. (b) Structure of at-
tention-convolution block. (c) Structure of multi-scale attention-convolution block.
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through convolution. Firstly, MIRN uses convolution kernels of different sizes to ex-
tract the initial features from the estimated PPI and the raw mosaic, respectively. Sec-
ondly, the encoder performs feature fusion and extraction of the initial features at
different levels to generate deep features. Then, deep features are transformed through
the bottleneck. Finally, the feature is passed through the decoder and an independent
convolutional layer to generate the MSI. 

The encoder is mainly composed of  PPI-transformer block (PPITB) and down-
sampling module. The down-sample module is a stridden 4×4 convolutional layer that
down-scales the feature maps and doubles the channels. The bottleneck consists of  two
transformer blocks (TB). Following U-Net’s structure, the symmetric decoder has the
same number of layers as the encoder, but its main module is TB instead of  PPITB.
The whole network uses skip connections to aggregate features between encoders and
decoders to reduce information loss caused by down-sampling operations.

The structure of PPITB and TB is shown in Fig. 4(b) and (c). TB consists of three
fully connected layers, a GELU activation function, and a feed-forward network (FFN).
The details of FFN are depicted in Fig. 4(d). To enable PPI and the image to carry out
deep feature fusion, the TB is further improved to form the PPITB. Specifically, an input
branch and an output branch are introduced. The input branch consists of a fully con-
nected layer, and the features of the original branches are weighted and fused. The fused

Fig. 4. Multispectral image reconstruction network. (a) Overall structure of multispectral image recon-
struction network. (b) Structure of transformer block. (c) Structure of PPI-transformer block. (d) Structure
of feed-forward network.
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features are divided into two parts: one part is multiplied with the other two fully con-
nected layers as the feature output of the image, and the other part is output as further
characteristics of the PPI to the PPI input at the next layer. In the encoder layer, the
PPITB is stacked to achieve the feature fusion of PPI and the original mosaic at dif-
ferent levels.

3.4. Loss function

To train the entire framework, we utilize a combined loss function denoted as l, which
aims to simultaneously minimize the reconstruction errors of PPI and demosaicing im-
age.

(5)

where lPPI is the loss function of PPIGN, and lHSI is the loss function of MIRN. Our
network is optimized by minimizing the following loss function. We define it as the
L1 norm of the difference between the estimated value and the true value. Given a train-
ing set with K training sample pairs  the expressions for lPPI and
lHSI are as follows:

(6)

(7)

where  and  what are the demosaicing results of the mosaicked training sample
and the estimated PPI. IMSI and IPPI are the real MSI and the accurate PPI.

4. Experiments and analysis

This section involves conducting a quantitative and visual comparison with several
state-of-the-art methods on a benchmark dataset and analyzing experimental results.

4.1. Dataset description

The ARAD-1K dataset [25] released by the NTIRE 2022 challenge is a high-quality
publicly available multispectral reflectance dataset. The first-of-its-kind large-scale
dataset for MSFA demosaicing of natural scenes contains 1000 images with 16 spectral
bands covering 400–1000 nm wavelengths. Each scene includes 482×512 spatial res-
olution multispectral reflectance images. We perform spatial subsampling of these im-
ages to generate the raw mosaic image utilizing the 4×4 MSFA mode, without
employing a dominant band. To evaluate our model quantitatively, we choose the 950
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images with GT for training (900 images) and testing (50 images).

4.2. Training details

We did not use data enhancement operations during the training and implemented the
proposed network using Pytorch. The whole network is optimized using Adam [26]
optimizer. The training process is done for 2000 iterations with a batch size of 16. All
the experiments were run on one NVIDIA GTX 3090 GPU.

4.3. Quantitative experiments metrics

We adopt the peak signal-to-noise ratio (PSNR), structural similarity [27] (SSIM), and
spectral angle mapper (SAM) [28] as the quantitative evaluation metrics. PSNR is a con-
ventional evaluation index in image processing and computer vision that measures the
similarity between the demosaiced MSI and the actual MSI based on mean squared
error (MSE). SSIM assesses the image degradation between the demosaiced and au-
thentic MSI. SAM is a way of measuring the degree of similarity between multispectral
images from spectral dimensions. The unit of PSNR is dB, the unit of SAM is degree,
and the unit of SSIM is 1.

4.4. Demosaicing results and analysis

To illustrate the effectiveness, our proposed algorithm was compared to four traditional
methods, including BETS [29], WB [10], PPID [26], SD, and two deep learning-based
methods including DPD-net [21] and MCAN [22]. Which are specially designed for
MSFA image demosaicing. The source codes of these hand-crafted and CNN-based
methods are publicly available. We apply these algorithms to the ARAD-1K dataset
for evaluation.

The comparisons between our proposed algorithm and other SOTA methods are
listed in Table 1. As can be observed. our method achieved a PSNR of 48.4023, sig-
nificantly higher than the other methods, indicating a pronounced advantage in mini-
mizing reconstruction errors and improving image quality. Particularly compared to
DPD-net (47.063) and MCAN (47.579), although these latter two also displayed high
PSNR values, our method is closer to a lossless reconstruction. In the two evaluation
indicators of SAM and SSIM, our model has a little gap with MCAN and DPD-net,
but there is still a small improvement.

Figures 5 and 6 provide visual comparisons of various demosaicing methods, aim-

T a b l e 1. PSNR, SAM, and SSIM assessments of the demosaiced MSI on the ARAD-1K dataset. 

Metrics WB BTES SD PPID DPD-net MCAN Ours

PSNR 35.410 35.514 37.334 40.515 47.063 47.579 48.402

SAM 6.048 5.984 5.674 3.717 1.677 1.570 1.500

SSIM 0.9646 0.9651 0.9780 0.9873 0.9981 0.9983 0.9987
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ing to subjectively evaluate their performance. Given the vast amount of data in MSI,
this study synthesized a false color map (the three channels of the image are not the
information of the RGB, but other bands) using selected bands. The two figures mainly
show the details of the areas marked in red boxes in the scene. As illustrated in Fig. 5,
compared to traditional interpolation algorithms, the network proposed in this paper
significantly outperforms in terms of clarity and detail preservation, demonstrating the
best recovery quality. Although the performance differences among our network,
MCAN, and DPD-net are minimal, our network excels in detail processing. Figure 6
specifically highlights the junction between the building and the sky. Our algorithm
distinctly surpasses others by producing the fewest artifacts and closely approximating
the true scene, as evidenced by the seamless transitions and accurate color reproduction
in the highlighted area. These results affirm the advanced capability of our method in
handling complex scenarios in MSI processing, confirming its significant value in

Fig. 5. Visual comparison of demosaicing methods in ARAD-1K 946 scene (false color, R:2, G:11, B:16).
Our method is compared with six alternatives, BTES, WB, SD, PPID, DPD-net, MCAN. We have only
presented an expanded perspective of the selected area; please zoom in for further details.

Fig. 6. Visual comparison of demosaicing methods in ARAD-1K 901 scene (false color, R:2, G:11, B:16).
Our method is compared with six alternatives, BTES, WB, SD, PPID, DPD-net, MCAN. We have only
presented an expanded perspective of the selected area; please zoom in for further details.
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practical applications where precise color and detail reproduction are paramount.

4.5. Ablation studies and analysis

To assess the indispensability of each component within our pipeline, we executed a se-
ries of ablation studies on various configurations of our methodology. Each experi-
mental setup is scrutinized in subsequent sections. It is important to note that apart from
the dedicated hyperparameter ablation experiments, we standardized the configuration
of the MIRN hyperparameters across all tests, setting two modules per layer. Within
each module, the weight assigned to the PPI fusion module is consistently maintained
at one.

1) The effect of different PPI: We evaluated the impact of various PPI generation
methods on the quality of multispectral image reconstruction. These methods included
the absence of PPI, smooth filtering, real PPI, and PPI generated via PPIGN. Our anal-
ysis, as detailed in Table 2, reveals that the incorporation of PPI significantly enhances
network performance in the demosaicing process. The reconstruction results also prove
that PPIGN has a better ability to generate PPI than the average filter. Notably, there
exists a minor discrepancy between the outcomes derived from our model and those
utilizing real PPI (only 0.13 dB lower). This discrepancy can be attributed to the in-
herent limitations in completely reconstructing real PPI.

2) Effects of different weights in the PPITB module: Table 3 presents the impact
of varying weights within the PPITB module on the quality of reconstructed MSI. It
is observed that as the weight value changes from 0.1 to 1, the quality of the recon-
structed image decreases. However, it remains relatively unchanged between weights
of 1 and 10. This phenomenon can be attributed to two main reasons. First, PPI plays
an auxiliary role. At weights less than 1, the features from the original mosaic image
dominate, with varying weights affecting the degree of assistance and, consequently,
the reconstruction quality. Second, at weights greater than 1, PPI features become dom-
inant. However, due to the limited correlation between PPI and MSI, the reconstruction
quality degrades. The minimal difference in quality between weights of 1 and 10 can
be explained by the neural network’s adaptive capability and optimization. Notably,
architectures using a weight of zero and excluding PPI differ primarily in their loss

T a b l e 2. PSNR of multispectral image reconstruction using PPI generated in different ways.

Way No Average filter Ours Real 

PSNR 47.0755 47.4312 48.2092 48.3423

T a b l e 3. PSNR of reconstructed MSI with different weights in PPITB.

Weight 0.0 0.1 0.5 1.0 10.0

PSNR 48.3405 48.4023 48.3867 48.2092 48.2138
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functions, which highlights that different loss functions can significantly enhance re-
construction performance.

3) The effect of different numbers of blocks in MIRN: Table 4 illustrates the con-
figuration settings of MIRN layers and their corresponding experimental results. It is
evident that increasing the number of modules (N1, N2) within the shallow feature ex-
traction layers enhances the reconstruction quality of MIRN. Conversely, increasing
the number of modules (N3) in the third layer significantly degrades the reconstruction
quality, with an average decrease of 0.5 dB. This degradation may be attributed to the
reduced correlation between PPI and MSI in deeper network layers, which introduces
errors and diminishes the quality of the reconstructed images. This observation under-
scores the importance of optimizing layer-specific module configurations to effective-
ly improve MIRN performance. 

4.6. Running time and computational cost

The speed and computational cost of the demosaicing method are crucial factors in de-
termining its feasibility for implementation in a real multispectral imaging system.
Table 4 presents a comparison of the runtime, GFLOPs, and parameters of  the most
advanced demosaicking methods. The results are averaged over 50 runs using the
ARAD-1K test set. All methods are implemented with PyTorch on the same machine
(Intel CPU 3.6 GHz, 16 GB memory, and NVIDIA GPU GTX 3050Ti). Notably,
DPD-net reconstructs MSI one band at a time, resulting in fewer parameters. As shown
in the data comparison, while our network has a longer runtime compared to MCAN,
it outperforms MCAN in the other three metrics. Therefore, considering all aspects,
our network demonstrates superior overall performance compared to MCAN.

T a b l e 4. PSNR of reconstructed MSI with different numbers of modules in MIRN.

Model N1 N2 N3 PSNR

Mode 1 2 2 2 48.1933

Mode 2 2 2 4 47.7026

Mode 3 2 4 4 47.7557

Mode 4 4 2 2 48.3136

Mode 5 4 4 2 48.3854

Mode 6 4 4 4 47.7261

T a b l e 5. The demosaicing performance and complexity comparisons.

Model PSNR Running times [s] Params(M) GFLOPS

DPD-net 47.063 0.091 4.39 107.84

MCAN 47.579 0.005 13.74 71.76

Ours 48.402 0.026 9.94 25.78
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4.7. Sensitivity analysis of noise

We present the sensitivity analysis of the proposed method alongside state-of-the-art
methods at various noise levels in Table 5. In these experiments, Gaussian noise with
zero mean and variances of 0.001, 0.01, and 0.05 was added to the ARAD-1K dataset
(pixel values ranging from 0 to 1). As shown in Table 6, our method consistently
achieves a high peak signal-to-noise ratio (PSNR) across varying noise levels, outper-
forming the current state-of-the-art methods. 

5. Conclusion

This paper proposes a multispectral image demosaicing model based on PPI and trans-
former. The method first rapidly reconstructs PPI through the attention mechanism.
At the same time, the custom transformer architecture efficiently extracts the features
of  the generated PPI and the raw mosaic image, leading to a high-precision multispectral
image reconstruction. Experiments demonstrate that our proposed PPI-transformer
model outperforms existing MSFA demosaicing approaches in quantitative metrics
and visual comparisons. The proposed method could be used to build high-quality
MSFA-based image acquisition systems that work well in medical imaging, food qual-
ity inspection, and remote sensing applications. 
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