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To process the massive optical image data collected in machine vision systems and address the
limitations of current learning detection models for real-time processing, this paper proposes
a lightweight and real-time detection model based on YOLOX-Nano. While YOLOX-Nano is
a lightweight object detection model, its detection accuracy is relatively low. Thus, this paper fo-
cuses on ensuring a lightweight model while maintaining high accuracy. The improved model in-
corporates an attention mechanism based on spatial and channel features to enhance the feature
extraction capability of the YOLOX-Nano model. Additionally, a dual decoupled feature fusion
approach is introduced to further improve the weighted fusion of feature maps extracted at different
levels. This approach addresses the issue of smaller objects being overlooked in multi-object de-
tection and enhances detection accuracy. Compared with the YOLOX-Nano baseline model, the
proposed model achieves a detection speed of 59.52 FPS (frames per second) while increasing the
AP50:95 metric. It meets the requirements for real-time detection, which is suitable for deployment
on embedded systems, enabling the requirements of miniaturized optical processing tasks.

Keywords: lightweight optical detection system, YOLOX-Nano, decoupled attention mechanism (DAM),
dual decoupled feature fusion (DDFF).

1. Introduction

Real-time optical image processing systems are widely used in fields such as aero-
space, medicine, education, agriculture, industry, security, and other fields. It consists
of an optical collector, processor, and image processing algorithm, among which the
image processing part is the key to real-time systems. In the early stage, we constructed
a real-time image acquisition preprocessing algorithm [1]. This paper continues to
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study how to process optical images in real time, that is, how to build a real-time object
detection algorithm with general hardware resources.

Addressing the substantial volume of collected images to achieve high stability and
high-frequency detection in computer vision is crucial for enhancing the processing
speed of object detection. Liu et al. [2] introduced the EA edge feature for object de-
tection, utilizing EA-HOG to generate two symmetric images, which improved detec-
tion precision. However, this falls short of the real-time requirement of over 30 frames
per second. WEI et al. [3] combined the Harr feature with HOG for detection, achieving
a detection speed of 137 ms per frame. ZHAO [4] proposed a method combining a slid-
ing window with HOG and then detecting with SoftMax, attaining a detection speed
of 27 FPS. Feature extraction is a critical step in object detection, yet the computation
speed of HOG features is slow. The aforementioned traditional methods depend on im-
age localization for feature extraction, and the absence of weakly supervised methods
significantly increases computational complexity. Additionally, the detection speed re-
mains relatively low, limiting real-time detection of massive images.

Deep learning-based methods can swiftly explore the optimal solution through self
-learning, enhancing real-time image detection. In the field of computer vision sys-
tems, processing massive image data increasingly relies on deep learning-based object
detection algorithms [5]. WEI et al. [6] used an improved YOLO V3 algorithm to detect
objects, implementing an unsupervised neural network to extract and classify object
features. This approach achieves a detection speed of 58.4 FPS, significantly improving
the aforementioned traditional methods. Gao et al. [7] proposed the CSPDarknet53 re-
sidual block embedded in the YOLO V4. This network model, with a size of 218.2 MB,
offers robust detection capabilities. However, the large number of model parameters
poses challenges for deploying in embedded machine vision systems.

GE et al. [8] proposed the YOLOX algorithm, a high-performance anchor-free de-
tector that significantly reduces the number of model parameters. To adapt to minia-
turized systems and minimize model parameters, GE et al. designed YOLOX-Tiny, and
YOLOX-Nano. YOLOX-Tiny has a 10.1% improvement in AP while reducing the pa-
rameters compared to YOLO v4-Tiny. Ji et al. [9] used YOLOX-Tiny as a benchmark,
combining the convolutional block attention module with an adaptive spatial feature
fusion strategy. They developed an apple object detection method based on Shufflenetv?2
-YOLOX, achieving 65 frames per second while maintaining high average detection
accuracy. This method is also applicable to detecting other objects. While the attention
mechanism aids in detecting small and medium objects, it may not enhance each ef-
fective feature layer of the feature pyramid, leading to over-coupling issues. Addition-
ally, the YOLOX-Tiny is not the smallest model in terms of parameter volume.
YOLOX-Nano, though suitable for real-time object detection, suffers from lower ac-
curacy and precision, with higher object leakage and misdetection rates. In summary,
the research goal of this paper is to improve the accuracy of lightweight models and
design a real-time detection model with a small parameter volume.

Based onthe YOLOX, Lu et al. [10] proposed an Adaptive Feature Pool, which con-
nects the feature net and all the feature levels. For one-stage object detection based on
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a feature pyramid, the inconsistency between features of different scales is one of the
main limiting factors. Liu et al. [11] proposed adaptively spatial feature fusion (ASFF),
an adaptive fusion strategy that realizes the spatial fusion of feature maps of different
scales. Hu et al. [12] applied ASFF to fuse feature maps of different sizes in the feature
pyramid and used the coordinated attention mechanism to further improve the feature
extraction, obtaining a detection speed of 54.35 FPS. The attention mechanism allows
the model to selectively focus on specific parts of the information, thus alleviating in-
formation overload.

Lightweight detection models often struggle to achieve high accuracy due to their
small number of parameters. However, their architecture is similar to the complex net-
works, allowing for compensation in feature extraction through feature enhancement
and feature fusion. Structural expansion, though, leads to larger model sizes and in-
creased training time.

To address the challenge of low detection accuracy for both larger and smaller ob-
jects, this paper utilizes the YOLOX-Nano model combined with the lightweight at-
tention mechanism module since different sizes of feature maps are suitable for
detecting different sizes of objects. This approach realizes the fusion of feature maps
by splicing and weighting, and solves the problem of inconsistent feature scales in the
feature pyramid, improving the model’s detection accuracy. Thus, it enhances the de-
tection accuracy under the same amount of the advanced model volume.

2. Lightweight model construction

The improved model proposed in the paper is shown in Fig. 1, which contains three
parts: CSPDarknet, feature pyramid networks (FPN) and YOLO head. CSPDarknet
and FPN form a feature extraction network, while the YOLO head is a detector specific
to the YOLOX algorithm. CSPDarknet and FPN constitute the backbone of YOLOX,
i.e., the feature extraction network of YOLOX. In this paper, for the effective feature
layers extracted in the backbone, a decoupled attention mechanism (DAM) based on
spatial and channel features is proposed to realize the decoupling to achieve targeted
feature enhancement.

FPN is an enhanced feature extraction network for YOLOX, where three effective
feature layers obtained from the backbone part are fused. To solve the inconsistency
problem within the feature pyramid, a dual decoupled feature fusion (DDFF) is de-
signed to optimize the matching of the feature map.

2.1. Decoupled attention mechanism model

Aiming at the characteristic of the backbone network to extract feature maps with
multiple resolutions and channel numbers, this paper designs a decoupled attention
mechanism based on spatial and channel features, as shown in Fig. 1. The decoupled
attention mechanism can purposefully strengthen the feature extraction ability of the
pyramid at different layers. Accordingly, based on the classification method, we de-
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Fig. 1. Improved YOLOX-Nano network architecture.

signed an attention mechanism suitable for spatial and channel features respectively,
achieving strong decoupling of spatial and channel features.

2.1.1. The SE module

The squeeze and excitation (SE) [13] attention module network architecture is shown
in Fig. 2, where 7 is the scaling rate.
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HxWxC
Re-weight

Output Fig. 2. Squeeze and excitation module.
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First, after the basic convolution calculation, the feature maps of size u, are ob-
tained, and the c feature map H x W are obtained, and the feature map u, is calculated
as follows,

o

u, = v, *X = ng*XS (1)
s=1

where v, denotes the convolutional kernel, X* denotes the input, and X € RV H*C

The squeeze operation is then performed, i.e., global average pooling is used to trans-
form the input W x H x C into the output 1 x 1 x C.

1 w H

2= G X 2l ) @
i=1j=

s = F,(z, W) = o(g(z,w)) = a(W,0(W, * z)) 3)

The final excitation operation is as Eq. (3), where W, * z is the fully connected op-
eration and ¢ is the ReL.U activation function, which ultimately yields the weights s
of the feature maps of each channel.

2.1.2. Improved CBAM

The convolutional block attention module (CBAM) [14] can sequentially generate at-
tention feature map information in both channel and spatial dimensions, and then the
information of both feature maps is multiplied with the previous original input feature
map for adaptive feature correction to produce the final feature map.

For the feature maps generated by the backbone network extraction,

Fe RC x Hx W (4)
CBAM produces one-dimensional maps of channel attention features, respectively,

M (F) = o(MLP(AvgPool( F)) + MLP(MaxPool(F))) (5)

MCERCxlxl (6)

where ¢ is the sigmoid activation function. Further, the spatial attention feature map
is computed in two dimensions,

M(F) = a(f7”7(AvgPool( F); MaxPool( F))) (7)

MERIXHXW (8)

S

and f7*7is a7 x 7 convolution operation and element-wise multiplication of (2) and
(4) in turn,
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F’ =MC(F)®F (9)
F' = M(F)®F' (10)

In the above equation ® denotes element-level multiplication, with a broadcast
mechanism for dimensional transformation and matching in between. CBAM is re-
alized based on the channel attention mechanism and spatial attention, and to strength-
en the role of the channel attention mechanism, SE is used to replace the traditional
channel attention mechanism in CBAM. Therefore, Eq. (10) is modified as follows,
SE, is F' the feature map extracted by SE,

F" = SE(F")®F' (11)

2.1.3. CA module

The coordinate attention (CA) mechanism [15] (as shown in Fig. 3) encodes the exact
location from the height and width of the image and obtains the feature maps in both
width and height directions, respectively,

Zhm = Y s () (12)
0<isw
1
28y = 52 Y %G ) (13)
0<j<H

The feature maps in both full-width and height directions are obtained to be stitched
together by the concat operation, which is sequentially computed by the shared con-
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ot Fig. 3. Coordinate attention module.
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volution kernel as a 1 X 1 convolution, the batch normalization process, and the sigmoid
activation function,

[ = 0(F[z"2"]) (14)

The feature maps F}, and F, are obtained by convolving the height and width of /'
with a convolution kernel of 1 x 1, respectively, and the attention weights of the feature
maps on the height and width, g” and gV, are calculated by sigmoid.

"= o (Fy(SM) (15)
g = a(F (/") (16)

Finally, the final feature map with attentional weights in the width and the height
directions will be obtained by multiplicative weighting calculation on the original fea-
ture map with the formula shown below,

velis j) = x.(i, j) x gl(i) x g () 7)

2.2. Dual decoupled feature fusion

Asincluded in Fig. 1, the feature maps are up-adopted and down-sampled, then spliced
to form a simple combination, which fails to fully reflect the differences between the
feature maps. In CNN, the shallow layer is weak in semantic information but rich in
location information. Conversely, deeper layers possess stronger semantic information
but weaker location information. In the original FPN, when a feature map matches
an object, the information on the feature maps of other layers is ignored. To address
this, the first weight of feature fusion, after twice downsampling to achieve consistent
feature map resolution size, combined with CSPLayer+Concat operation to achieve
splicing.

There is a network structure similar to a fully connected layer between the ASFF
and the output. This structure allows the model to adaptively train and get the weight
sizes of the three feature layers, enhancing object detection. However, this process in-
creases the number of model parameters.

I _ 1>/ / 2—>l 31
Vi = gol]*x Bk +yl]*x (18)

Take the third fused feature ASFF-3 as an example. The vector at the spatial loca-
tion (i, j) after fusion is the weighted fusion of the vectors at the three feature maps (7, j)
before fusion, and i, j € (0, 3). x|, x,, x5 are the feature maps from the three different
layers. By multiplying the weight parameter ¢, 5, 75 by the features from the different
layers and adding them up, we can obtain a new fused feature ASFF-3. Due to the sum-
ming method, the output features from different layers must have the same size and
the same number of channels. Therefore, it is necessary to upsample or downsample
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the different features and adjust the number of channels to match the output of the first
feature map.

, exp (41, )
Py ~ ! lj ! (19)
exp(/l%) + exp (/Iﬁlj) + exp(4 V,y)

The coefficients 4 in Eq. (19) are the spatial importance weights of the feature map,
which are adaptively learned by the network and they are shared among all channels.
The coefficients /1 are assigned as weights to different feature layers, and these weights
are self-adaptively trained by the BP algorithm using 1x 1 convolution to distinguish
the importance of different feature layers. The parameters ¢, f, y are passed through
softmax after concat operation, ensuring that they all fall within the range [0, 1] and
sum to 1.

3. Experimental results and comparative analysis
3.1. Data preprocessing

Due to the large kinds of objects involved in object detection, we chose the railway
track fasteners as the object in this experiment. Defects or missing fasteners may lead
to safety accidents, so it is necessary to process the collected fasteners images in real
-time [16]. Hu et al. classified all the defects fasteners into three categories: normal,
crack, and displacement [ 12]. However, they did not consider the defects cases of miss-
ing fasteners and deformation of strips, which may limit the object detection model’s
generalization ability. In this paper, we further subdivide the defects categories and in-
crease the training samples to seek better generalization ability. The models mentioned
in the previous section [6,7,12] were trained on less than 2,000 samples, which poses
a risk of overfitting when the number of samples is too small. To address this problem,
we collect more samples of fasteners to ensure sufficient training and avoid overfitting.

Based on the collected samples and data enhancement, a total of 7,939 samples,
including nearly 10,000 detection objects, were finally obtained. These were classified
into six categories: normal, crack, deficiency, displacement, cover, and deformation.
The samples were divided into the training set, test set, and validation set according
to the approximate average distribution ratio. The number of samples included in each
category is shown in Table 1. Investing in a large number of training samples can make
the model get repeated training, ensuring high accuracy and strong generalization abil-
ity while avoiding overfitting.

Table 1. Sample size of different types of image data.

Dataset Normal Crack Deficiency Displacement Cover Deformation
Train 258 860 1664 1546 283 152
Test 94 305 521 516 110 22

Val 100 309 515 536 86 22
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3.2. Comparison of training results and performance

The max epoch is set to 500 and batch size is set to 32. In this paper, we use control var-
iables to compare the differences before and after the model improvement for the dataset.
YOLOX-Nano is used as the control group, while our improved YOLOX-Nano is used
as the experimental group.

The validation set is then used to calculate the mean average precision (mAP) for
each category of object detection. The mAP values reflect the comprehensive perfor-
mance of the detection model in recognizing detections across all categories.

As shown in Table 2, the number of parameters of the improved model in this paper
is 2.31M. This represents a slight increase compared to the model with the ASFF, but
it is still significantly smaller than the YOLOX-Tiny [8] of 5.06M, which is consistent
with the lightweight design. The actual increase in floating-point computation is about
1.99G, which remains within the acceptable range.

AP50:95 is the result of the YOLO algorithm under the IoU = 0.5 condition, where
AP is calculated at intervals of 0.05, and the overall average is finally calculated.
The training results of YOLOv5n, YOLOX-Nano, YOLOX-Tiny, and faster R-CNN
are included for comparison in this paper.

The model detection performance before and after improvement is shown in Table 3.
The faster R-CNN detection rate using MobilenetV2 with 3.4M [19] parameters as the
backbone is significantly higher than that of the Faster R-CNN with Resnet50+FPN
selected as the backbone. The number of parameters of Resnet50 is about 25.64M, and
the number of parameters of FPN is significantly higher than that of MobilenetV2.

Table 2. Ourimproved YOLOX-Nano parameters and computation volume.

Model Params(M) Flops(G)
YOLOX-Nano 0.9 1.08
CBAM-YOLOX-Nano 0.92 1.08
ASFF- YOLOX-Nano 2.27 1.99
ASFF&CBAM-YOLOX-Nano 2.29 1.99
DDFF&DAM-YOLOX-Nano 2.31 1.99
Ours 2.31 1.99

Table 3. Detection performance of different models.

Model Backbone AP50:95 [%] Frame per second
Faster R-CNN [17] FPN-+Resnet50 [18] 45.6 20.73
Faster R-CNN MobilenetV2 [19] 344 53.58
YOLOv5n CSPDarknet 79.1 52.06
YOLOX-Tiny CSPDarknet 81.3 58.48
YOLOX-Nano CSPDarknet 81.12 59.88
ASFF&CBAM-YOLOX-Nano CSPDarknet 81.46 57.14
DDFF&DAM-YOLOX-Nano CSPDarknet 82.08 58.13

Ours CSPDarknet 82.72 (+2.6) 59.52
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The model with more parameters has a slower detection rate, which aligns with the
characteristics mentioned in the previous section. However, this approach has lower
detection accuracy, a common deficiency of lightweight neural network models. De-
spite this, the detection speeds of both Faster R-CNNs with these two different back-
bones are lower than YOLOX, and their detection accuracies are also lower.

Compared with the original YOLOX-Nano, our method has a 1.6% improvement
in AP50, with no significant increase in average inference time. Moreover, the number
of parameters is much smaller than that of YOLOX-Tiny while improving the detection
accuracy, effectively balancing the number of parameters and accuracy. Comparing the
original algorithm with ASFF&CBAM-YOLOX-Nano and the method in this paper,
it can be seen that YOLOX combined with ASFF can reduce the model instability
caused by the differences in the scale of the feature maps, leading to higher detection
accuracy. The feature fusion mechanism significantly improves real-time detection
speed, while the attention mechanism enhances the feature extraction ability for small
objects, thus improving overall detection accuracy. Therefore, the combination of
ASFF & CBAM-YOLOX-Nano with CBAM and the method in this paper performs
better in the performance index of AP50:95. The DAM used in our method adopts an
objected attention mechanism for the characteristics of each layer of the feature pyr-
amid, which realizes the decoupling of the feature reinforcement method and shows
superior detection performance. This method utilizes the idea of partitioning, different
from the multi-layer superposition of the attention mechanism on the feature map, ef-
fectively improving detection performance without generating more parameters and
computation.

In terms of time expenses, our method achieves a detection speed of 59.52 FPS
while also increasing the detection accuracy, meeting the requirements for real-time
efficient detection. This demonstrates that our method improves the detection perfor-
mance of the model while maintaining reasonable control over time and space over-
head, resulting in an accurate and effective real-time detection model.

3.3. Training parameter settings

The maximum value of batch during training is set to 32 to avoid memory overflow.
The attenuation coefficient is 0.0005, and the image size is standardized to (416, 416)
for training. The activation function chosen is silu. Following the training method pro-
posed in the original YOLOX article, we removed the mixup and weakened the mosaic
effect for smaller models, which has been experimentally shown to acquire better
training results [8]. Therefore, the optimization parameter mosaic-scale is adjusted
from (0.1, 2) to (0.5, 1.5) to weaken the mosaic effect in training.

3.4. Optical image detection in real time

Table 4 shows the effect of our model on detecting defects in six types of railway fas-
teners. Compared with the performance of various detection methods mentioned
above, the confidence level for small object classification is slightly lower. However,
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Table 4. Detection performance in different fastener object defects.
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Fig. 4. Real-time detection of the small optical object on ballasted track and no-ballasted track.

the confidence level of our algorithm’s detection results is above 85%, as shown in
Fig. 4, with no classification judgment errors. Therefore, our model also demonstrates
high accuracy in detecting small targets.
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4. Conclusions

The proposed method reduces the existing model’s size and makes it applicable in em-
bedded vision systems. It enhances the model’s feature extraction capabilities based
on spatial and channel features with the decoupled attention mechanism and addresses
the issue of inconsistent object feature scale with the dual decoupled feature. Therefore,
the proposed model addresses the problem of insufficient accuracy of the lightweight
model in detecting small objects, achieving a balance between model volume and detec-
tion accuracy with a comparable detection speed. Further work could consider deblurring
images to improve the accuracy of object detection [20, 21]. This improved model has
been applied in the detection of railway track defects, and also it can be extended to
other real-time object detection.
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