Vol. 41, Issue 4, pp. 953-959 (2011)

Vol. 41 Issue 4 pp. 953-959

Gamma-radiation induced degradation random walk error in interferometer fiber optic gyroscope

Shisen Du, Xueqin Wang, Song Lin, Chunxi Zhang

Keywords

fiber optic gyroscope, gamma radiation, noise, random walk coefficient

Abstract

Gamma-radiation induced random walk error (RWE) of interferometer fiber optic gyroscope (IFOG) is presented in this paper. Testing was performed at the components and system level with an expanded version of a closed-loop operational fiber optic gyroscope. Primary concerns include attenuation to total dose, angle random walk, and bias stability degradation as a function of dose. Closed-loop transient noise results are evaluated based on radiation test of the 400 m fiber coil. Based on the test result, a random walk coefficient (RWC) prediction model in radiation environment, which is obtained by embedding polarization-maintaining (PM) fiber loss expression into the RWC model, was built following a power law of dose. An IFOG RWC in space radiation environment was predicted from radiation dose rate by the prediction model. The RWC of the IFOG is limited by the detector thermal noise above 1 kGy radiation and the RWC prediction model is verified by radiation experiment.

Vol. 41
Issue 4
pp. 953-959

0.08 MB

Corresponding address

Optica Applicata
Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Publisher

Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Contact us

  • optica.applicata@pwr.edu.pl
  • +48 71 320 23 93
  • +48 71 328 36 96