Vol. 45, Issue 2, pp. 205-214 (2015)
Keywords
microscopes, binocular vision, local disparity map, depth of field (DOF), height measurement
Abstract
A super depth of field height measurement method is proposed to measure the object height with the optical stereoscopic microscope. The quasi-Euclidean epipolar rectification algorithm is utilized on the original stereoimage to obtain rectified stereoimages and calibrate two camera parameters. Then, feature points are obtained by the SURF (speed up robust feature) algorithm and their corresponding disparities are calculated. The disparity-depth of field curve is fitted by combining the step height values of a stepper motor. Moreover, through local disparity value got from feature points on the object, the relative shift height is calculated through regression analysis. Finally, according to binocular vision geometry, the thickness of the object can be calculated. Experimental results show that the measurement error in Z direction is from 1.51% to 7.71%, which indicates that the proposed method is able to measure the height of a microobject beyond depth of field within a tolerant error.