Vol. 45, Issue 4, pp. 559-571 (2015)

Vol. 45 Issue 4 pp. 559-571

Significance of features in object recognition using depth sensors

Bogdan Harasymowicz-Boggio, Lukasz Chechlinski, Barbara Siemiatkowska

Keywords

depth sensor, RGB-D features, 3D object recognition, Kinect

Abstract

This article concerns a key topic in the field of visual object recognition – the use of features. Object recognition algorithms typically rely on a fixed vector of pre-selected features extracted from 2D or 3D scenes, which are then analyzed with various classification techniques. On the other hand, the activation of particular features in biological vision systems is hierarchical and data-driven. To achieve a deeper understanding of the subject, we have introduced several mathematical tools to estimate multiple RGB-D features’ relevance for different object recognition tasks and conducted statistical experiments involving our database of high quality 3D point clouds. From the thorough analysis of the obtained results we draw conclusions that may be useful to design better, more adaptive object recognition algorithms.

Vol. 45
Issue 4
pp. 559-571

0.3 MB

Corresponding address

Optica Applicata
Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Publisher

Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Contact us

  • optica.applicata@pwr.edu.pl
  • +48 71 320 23 93
  • +48 71 328 36 96