Vol. 48, Issue 1, pp. 53-64 (2018)

Vol. 48 Issue 1 pp. 53-64

Defect modes properties in one-dimensional photonic crystals employing a superconducting nanocomposite material

Arafa H. Aly, Hussein A. Elsayed, Christina Malek

Keywords

photonic crystals, band gap, defect mode, nanocomposite

Abstract

In the present work, we investigate theoretically the transmission characteristics of one-dimensional photonic crystals that contain a defect layer of a nanocomposite material in infrared radiation. The theoretical treatment is obtained depending on the fundamentals of the characteristic matrix method. Here, the nanocomposite designed from nanoparticles of a superconducting material is arranged into a dielectric medium. The numerical results clarify the acute effect of the volume fraction and the operating temperature on the effective permittivity of the nanocomposite material. Therefore, the volume fraction, the operating temperature and other parameters such as the permittivity of the dielectric material and the threshold frequency could have a significant effect on the characteristics of the defect modes. Thus, our structure may be very promising in many applications such as narrow band filters and among optoelectronic applications.

Vol. 48
Issue 1
pp. 53-64

0.41 MB

Corresponding address

Optica Applicata
Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Publisher

Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Contact us

  • optica.applicata@pwr.edu.pl
  • +48 71 320 23 93
  • +48 71 328 36 96