Vol. 48, Issue 4, pp. 671-686 (2018)
Keywords
laser shock, imprinting, micro-mold, deformation depth, numerical simulation
Abstract
There are higher requirements for microstructures and high-precision components in microelectronics, photonics, sensors, optoelectronics and medical devices. For changing the traditional manufacturing methods with cumbersome process and complex equipment, researchers put forward a laser shock forming technique which can contribute to the metal forming with high precision and efficiency in recent years. So far, the laser shock forming needed high pulse energy and high energy. In this paper, nanosecond laser with high frequency and low pulse energy was adopted to make possible the aluminum foil forming on the copper micro-molds with different sizes and shapes. The deformations of aluminum foil were measured by SEM, optical profiler and AFM. Also, the deformation laws were analyzed by comparing imprinting results under different micro-molds. Lastly, stress distribution and deformation process of aluminum foil was investigated by numerical simulations.