Vol. 51, Issue 4, pp. 605-619 (2021)

Vol. 51 Issue 4 pp. 605-619

Digital watermarking algorithm based on 4-level discrete wavelet transform and discrete fractional angular transform

Jing-You Li, Chun-Hui Zhao, Guang-Da Zhang

Keywords

digital watermarking algorithm, mix optical bistability, Harris feature point detection, discrete wavelet transform, discrete fractional angular transform, singular value decomposition

Abstract

Nowadays, there are many watermarking algorithms based on wavelet transform. The simple one is to insert directly the watermark into the wavelet transform coefficients. However, most of the existing watermarking schemes can only resist traditional signal processing attacks, such as image compression, noise and filtering. When the watermarked image is subject to geometric transformations, especially rotation attack, it is hard to detect the watermark successfully. In this paper, a digital watermarking algorithm is proposed based on 4-level discrete wavelet transform and discrete fractional angular transform. To enhance the security of the algorithm, the watermark is scrambled with the simplicity of Arnold transform and chaos-based mix optical bistability model, since the chaos is pseudorandom and sensitive to the initial values. And the watermark is embedded into the medium frequency sub-band of the 1-level wavelet decomposition according to the Harris feature point detection. Simulation results show that the proposed digital watermarking algorithm by combining 4-level discrete wavelet transform with discrete fractional angular transform could resist rotation attack and other common attacks.

Vol. 51
Issue 4
pp. 605-619

1.75 MB

Corresponding address

Optica Applicata
Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Publisher

Wrocław University of Science and Technology
Faculty of Fundamental Problems of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Contact us

  • optica.applicata@pwr.edu.pl
  • +48 71 320 23 93
  • +48 71 328 36 96