Vol. 54, Issue 2, pp. 217-229 (2024)
Keywords
distributed optical fiber sensing, Φ-OTDR, disturbance recognition, Markov transition fields, auto-encoder
Abstract
To improve the model training efficiency and the classification performance of the phase-sensitive optical time-domain reflectometer (Φ-OTDR) in disturbance events recognition, a preprocessing method based on Markov transition fields (MTF) and auto-encoder (AE) is proposed. The phase time series, derived from demodulation of the original scattering signals, are converted into images by using the MTF method. Subsequently, an auto-encoder is introduced to perform a dimensionality reduction characterization of the MTF images, and the outputs of the encoder will be used as features for classification. The experimental results demonstrate that, compared with directly processing time series using 1-D CNN and classifying MTF images using CNN, the features obtained by the proposed method can accelerate the training process and improve the recognition performance of the classification model. The recognition accuracy for the four classes of events on the fence reaches 95.6%, representing a 12% increase.